1. Simulation of osmotic swelling by the stochastic immersed boundary method
- Author
-
Wu, CH, Fai, TG, Atzberger, PJ, and Peskin, CS
- Subjects
osmotic swelling ,statistical mechanics ,fluid dynamics ,thermal fluctuations ,fluctuating hydrodynamics ,the stochastic immersed boundary method ,Numerical & Computational Mathematics ,Applied Mathematics ,Numerical and Computational Mathematics ,Computation Theory and Mathematics - Abstract
We develop computational methods for the simulation of osmotic swelling phenomena relevant to microscopic vesicles containing transformable solute molecules. We introduce stochastic immersed boundary methods (SIBMs) that can capture osmotically driven fluid transport through semipermeable elastic membranes subject to thermal fluctuations. We also develop numerical methods to handle within SIBMs an elastic shell model for a neo-Hookean material. Our extended SIBM allows for capturing osmotic swelling phenomena driven by concentration changes and interactions between a discrete collection of confined particles while accounting for the thermal fluctuations of the semipermeable membrane and the hydrodynamic transport of solvent. We use our computational methods to investigate osmotic phenomena in regimes that go beyond the classical Van't Hoff theory. We develop statistical mechanics theories for osmotic swelling of vesicles when there are significant interactions between particles that can transform over time. We validate our theoretical results against detailed computational simulations. Our methods are expected to be useful for a wide class of applications allowing for the simulation of osmotically driven flows, thermally fluctuating semipermeable elastic structures, and solute interactions.
- Published
- 2015