1. PBI derivatives/surfactant-based fluorescent ensembles: Sensing of multiple aminoglycoside antibiotics and interaction mechanism studies.
- Author
-
Zhang R, Yan Z, Xue Z, Xu W, Qiao M, Ding L, and Fang Y
- Subjects
- Humans, Sodium Dodecyl Sulfate chemistry, Surface-Active Agents chemistry, Aminoglycosides chemistry, Aminoglycosides analysis, Anti-Bacterial Agents analysis, Anti-Bacterial Agents chemistry, Fluorescent Dyes chemistry, Spectrometry, Fluorescence, Perylene chemistry, Perylene analogs & derivatives
- Abstract
Fluorescent aggregates and ensembles have been widely applied in fabrication of fluorescent sensors due to their capacity of encapsulating fluorophores and modulating their photophysical properties. In the present work, fluorescent ensembles based on anionic surfactant SDS assemblies and perylene derivatives (PBIs) were particularly constructed. Three newly synthesized neutral PBI derivatives with different structures, PO, PC1 and PC2, were used for the purpose to evaluate probe structure influence on constructing fluorescent ensembles. The one with hydrophilic side chains, PO, experienced distinct photophysical modulation effect by SDS assemblies. The ensemble based on PO@SDS assemblies displayed effective fluorescence variation to antibiotic aminoglycosides (AGs). To improve cross-reactivity and discrimination capability of ensembles, a second probe, coumarin, was introduced into PO@SDS assemblies. The resultant ternary sensor, CM-PO@SDS, exhibited good qualitative and quantitative detection capabilities, and achieved differentiation of eight AGs and mixed AG samples both in aqueous solution and actual biological fluid, like human serum. Sensing mechanism studies revealed that hydrogen bonding, electrostatic and hydrophobic interactions are involved in the sensing process. This surfactant-based fluorescent ensemble provides a simple and feasible method for assessing AGs levels. Meanwhile, this work may provide some insights to design reasonable probes for constructing effective single-system based discriminative fluorescent amphiphilic sensors., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF