1. Structural Attention: Rethinking Transformer for Unpaired Medical Image Synthesis
- Author
-
Phan, Vu Minh Hieu, Xie, Yutong, Zhang, Bowen, Qi, Yuankai, Liao, Zhibin, Perperidis, Antonios, Phung, Son Lam, Verjans, Johan W., and To, Minh-Son
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Unpaired medical image synthesis aims to provide complementary information for an accurate clinical diagnostics, and address challenges in obtaining aligned multi-modal medical scans. Transformer-based models excel in imaging translation tasks thanks to their ability to capture long-range dependencies. Although effective in supervised training settings, their performance falters in unpaired image synthesis, particularly in synthesizing structural details. This paper empirically demonstrates that, lacking strong inductive biases, Transformer can converge to non-optimal solutions in the absence of paired data. To address this, we introduce UNet Structured Transformer (UNest), a novel architecture incorporating structural inductive biases for unpaired medical image synthesis. We leverage the foundational Segment-Anything Model to precisely extract the foreground structure and perform structural attention within the main anatomy. This guides the model to learn key anatomical regions, thus improving structural synthesis under the lack of supervision in unpaired training. Evaluated on two public datasets, spanning three modalities, i.e., MR, CT, and PET, UNest improves recent methods by up to 19.30% across six medical image synthesis tasks. Our code is released at https://github.com/HieuPhan33/MICCAI2024-UNest., Comment: MICCAI version before camera ready
- Published
- 2024