1. Functional characterization of large yellow croaker (Larimichthys crocea) Peroxiredoxin IV (PrxIV) gene promoter.
- Author
-
Wang X, Mu P, Huo J, Han F, Chen X, and Ao J
- Subjects
- Animals, Fish Diseases immunology, Fish Diseases genetics, Gene Expression Regulation immunology, Base Sequence, Sequence Alignment veterinary, Perciformes genetics, Perciformes immunology, Peroxiredoxins genetics, Peroxiredoxins immunology, Peroxiredoxins chemistry, Fish Proteins genetics, Fish Proteins immunology, Fish Proteins chemistry, Promoter Regions, Genetic, Immunity, Innate genetics
- Abstract
Peroxiredoxin IV (PrxIV), which possesses an N-terminal signal peptide, is the only secretable protein in Prx family. PrxIV can protect cells against reactive oxygen species (ROS) and act as a DAMP to promote infection-independent immune response. However, the characterization and regulation of promoters of PrxIV genes are rarely reported. In this study, a 1511-bp 5'-flanking sequence of large yellow croaker (Larimichthys crocea) PrxIV (LcPrxIV) was cloned and characterized. DNA truncation combined with luciferase activity assay revealed that a fragment of -781/+20 contained in the plasmid LcPrxIV-P3 exhibited the highest promoter activity. It could initiate the luciferase expression up to 44.6-fold when compared to control plasmid pGL3-Basic. TFSEARCH analysis revealed many recognizing sequences of transcriptional factors exist within this 1511-bp sequence, including Foxo and CREB. Altogether, four putative binding sites located in three recognizing sequences of CREB were identified. Notably, co-transfection of LcPrxIV-P3 with LcCREB led to a significant 2.48-fold increase of the LcPrxIV-P3 promoter activity (P<0.01). Furthermore, the mutation at putative binding sites A, B, and all four sites of CREB in the LcPrxIV-P3 caused the significant decrease of activation on LcPrxIV-P3 promoter activity, suggesting these two sites may be the main binding sites of CREB in LcPrxIV promoter. In addition, the oxidative stress caused by hydrogen peroxide, rather than immune stimuli such as Poly (I: C), LPS, LTA, or PGN could lead to the elevation of LcPrxIV-P3 promoter activity. When the concentration of hydrogen peroxide reached 500 μM, the promoter activity of LcPrxIV-P3 could be up-regulated to 1.47-fold, which was extremely significantly different from the control (P<0.001). These results help to elucidate the regulatory mechanisms of LcPrxIV gene expression, and the role of LcPrxIV in protecting cells against oxidative stress or in oxidoreduction-dependent signal transduction., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF