11 results on '"Perović DJ"'
Search Results
2. Assessing Tourist Revisit Intention through the Sports and Recreational Services Offered
- Author
-
Markus Zarko, Perovic Djurdjica, Pekovic Sanja, and Popovic Stevo
- Subjects
sport ,recreational ,tourism ,satisfaction ,revisit intention ,m21 ,Business ,HF5001-6182 - Abstract
Background: Sports and recreational tourism are forms of tourism that imply active involvement of tourists in various sports activities during their vacation, and it can be said that the main motive of such a vacation is a sport.
- Published
- 2019
- Full Text
- View/download PDF
3. Going Entrepreneurial: Agro-tourism and Rural Development in Northern Montenegro
- Author
-
Stanovčić Tatjana, Peković Sanja, Vukčević Jovana, and Perović Djurdjica
- Subjects
entrepreneurship ,rural development ,katun activities ,agro-tourism ,montenegro ,l83 ,Business ,HF5001-6182 - Abstract
Background: In Montenegro, there is a growing awareness of the necessity to further develop sustainable forms of tourism and foster economic development of mostly agrarian northern rural areas. However, this is of the utmost importance not only for sustaining local economy, but also for creating more balanced framework for territorial development.
- Published
- 2018
- Full Text
- View/download PDF
4. Managing biological control services through multi-trophic trait interactions: Review and guidelines for implementation at local and landscape scales
- Author
-
Perović, DJ, Gámez‐Virués, S, Landis, DA, Wäckers, F, Gurr, GM, Wratten, SD, You, M-S, and Desneux, N
- Published
- 2018
- Full Text
- View/download PDF
5. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
- Author
-
Karp, DS, Chaplin-Kramer, R, Meehan, TD, Martin, EA, DeClerck, F, Grab, H, Gratton, C, Hunt, L, Larsen, AE, Martínez-Salinas, A, O Rourke, ME, Rusch, A, Poveda, K, Jonsson, M, Rosenheim, JA, Schellhorn, NA, Tscharntke, T, Wratten, SD, Zhang, Wei, Iverson, AL, Adler, LS, Albrecht, M, Alignier, A, Angelella, GM, Anjum, MZ, Avelino, J, Batáry, P, Baveco, JM, Bianchi, FJJA, Birkhofer, K, Bohnenblust, EW, Bommarco, R, Brewer, MJ, Caballero-López, B, Carrière, Y, Carvalheiro, LG, Cayuela, L, Centrella, M, Ćetković, A, Henri, DC, Chabert, A, Costamagna, AC, De la Mora, A, de Kraker, J, Desneux, N, Diehl, E, Diekötter, T, Dormann, CF, Eckberg, JO, Entling, MH, Fiedler, D, Franck, P, van Veen, FJF, Frank, T, Gagic, V, Garratt, MPD, Getachew, A, Gonthier, DJ, Goodell, PB, Graziosi, I, Groves, RL, Gurr, GM, Hajian-Forooshani, Z, Heimpel, GE, Herrmann, JD, Huseth, AS, Inclán, DJ, Ingrao, AJ, Iv, P, Jacot, K, Johnson, GA, Jones, L, Kaiser, M, Kaser, JM, Keasar, T, Kim, TN, Kishinevsky, M, Landis, DA, Lavandero, B, Lavigne, C, Le Ralec, A, Lemessa, D, Letourneau, DK, Liere, H, Lu, Yanhui, Lubin, Y, Luttermoser, T, Maas, B, Mace, K, Madeira, F, Mader, V, Cortesero, AM, Marini, L, Martinez, E, Martinson, HM, Menozzi, P, Mitchell, MGE, Miyashita, T, Molina, GAR, Molina-Montenegro, MA, O'Neal, ME, Opatovsky, I, Ortiz-Martinez, S, Nash, M, Östman, Ö, Ouin, A, Pak, D, Paredes, D, Parsa, S, Parry, H, Perez-Alvarez, R, Perović, DJ, Peterson, JA, Petit, S, Philpott, SM, Plantegenest, M, Plećas, M, Pluess, T, Pons, X, Potts, SG, Pywell, RF, Ragsdale, DW, Rand, TA, Raymond, L, Ricci, B, Sargent, C, Sarthou, J-P, Saulais, J, Schäckermann, J, Schmitt, NP, Schneider, G, Schüepp, C, Sivakoff, FS, Smith, HG, Stack Whitney, K, Stutz, S, Szendrei, Z, Takada, MB, Taki, H, Tamburini, G, Thomson, LJ, Tricault, Y, Tsafack, N, Tschumi, M, Valantin-Morison, M, Van Trinh, M, van der Werf, W, Vierling, KT, Werling, BP, Wickens, JB, Wickens, VJ, Woodcock, BA, Wyckhuys, KAG, Xiao, Haijun, Yasuda, M, Yoshioka, A, and Zou Yi
- Full Text
- View/download PDF
6. The supply of multiple ecosystem services requires biodiversity across spatial scales.
- Author
-
Le Provost G, Schenk NV, Penone C, Thiele J, Westphal C, Allan E, Ayasse M, Blüthgen N, Boeddinghaus RS, Boesing AL, Bolliger R, Busch V, Fischer M, Gossner MM, Hölzel N, Jung K, Kandeler E, Klaus VH, Kleinebecker T, Leimer S, Marhan S, Morris K, Müller S, Neff F, Neyret M, Oelmann Y, Perović DJ, Peter S, Prati D, Rillig MC, Saiz H, Schäfer D, Scherer-Lorenzen M, Schloter M, Schöning I, Schrumpf M, Steckel J, Steffan-Dewenter I, Tschapka M, Vogt J, Weiner C, Weisser W, Wells K, Werner M, Wilcke W, and Manning P
- Subjects
- Agriculture methods, Plants, Ecosystem, Biodiversity
- Abstract
The impact of local biodiversity loss on ecosystem functioning is well established, but the role of larger-scale biodiversity dynamics in the delivery of ecosystem services remains poorly understood. Here we address this gap using a comprehensive dataset describing the supply of 16 cultural, regulating and provisioning ecosystem services in 150 European agricultural grassland plots, and detailed multi-scale data on land use and plant diversity. After controlling for land-use and abiotic factors, we show that both plot-level and surrounding plant diversity play an important role in the supply of cultural and aboveground regulating ecosystem services. In contrast, provisioning and belowground regulating ecosystem services are more strongly driven by field-level management and abiotic factors. Structural equation models revealed that surrounding plant diversity promotes ecosystem services both directly, probably by fostering the spill-over of ecosystem service providers from surrounding areas, and indirectly, by maintaining plot-level diversity. By influencing the ecosystem services that local stakeholders prioritized, biodiversity at different scales was also shown to positively influence a wide range of stakeholder groups. These results provide a comprehensive picture of which ecosystem services rely most strongly on biodiversity, and the respective scales of biodiversity that drive these services. This key information is required for the upscaling of biodiversity-ecosystem service relationships, and the informed management of biodiversity within agricultural landscapes., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
7. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity.
- Author
-
Le Provost G, Thiele J, Westphal C, Penone C, Allan E, Neyret M, van der Plas F, Ayasse M, Bardgett RD, Birkhofer K, Boch S, Bonkowski M, Buscot F, Feldhaar H, Gaulton R, Goldmann K, Gossner MM, Klaus VH, Kleinebecker T, Krauss J, Renner S, Scherreiks P, Sikorski J, Baulechner D, Blüthgen N, Bolliger R, Börschig C, Busch V, Chisté M, Fiore-Donno AM, Fischer M, Arndt H, Hoelzel N, John K, Jung K, Lange M, Marzini C, Overmann J, Paŝalić E, Perović DJ, Prati D, Schäfer D, Schöning I, Schrumpf M, Sonnemann I, Steffan-Dewenter I, Tschapka M, Türke M, Vogt J, Wehner K, Weiner C, Weisser W, Wells K, Werner M, Wolters V, Wubet T, Wurst S, Zaitsev AS, and Manning P
- Subjects
- Agriculture, Animals, Europe, Food Chain, Forests, Grassland, Herbivory, Insecta, Biodiversity, Ecosystem, Plants, Soil Microbiology
- Abstract
Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.
- Published
- 2021
- Full Text
- View/download PDF
8. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition.
- Author
-
Karp DS, Chaplin-Kramer R, Meehan TD, Martin EA, DeClerck F, Grab H, Gratton C, Hunt L, Larsen AE, Martínez-Salinas A, O'Rourke ME, Rusch A, Poveda K, Jonsson M, Rosenheim JA, Schellhorn NA, Tscharntke T, Wratten SD, Zhang W, Iverson AL, Adler LS, Albrecht M, Alignier A, Angelella GM, Zubair Anjum M, Avelino J, Batáry P, Baveco JM, Bianchi FJJA, Birkhofer K, Bohnenblust EW, Bommarco R, Brewer MJ, Caballero-López B, Carrière Y, Carvalheiro LG, Cayuela L, Centrella M, Ćetković A, Henri DC, Chabert A, Costamagna AC, De la Mora A, de Kraker J, Desneux N, Diehl E, Diekötter T, Dormann CF, Eckberg JO, Entling MH, Fiedler D, Franck P, Frank van Veen FJ, Frank T, Gagic V, Garratt MPD, Getachew A, Gonthier DJ, Goodell PB, Graziosi I, Groves RL, Gurr GM, Hajian-Forooshani Z, Heimpel GE, Herrmann JD, Huseth AS, Inclán DJ, Ingrao AJ, Iv P, Jacot K, Johnson GA, Jones L, Kaiser M, Kaser JM, Keasar T, Kim TN, Kishinevsky M, Landis DA, Lavandero B, Lavigne C, Le Ralec A, Lemessa D, Letourneau DK, Liere H, Lu Y, Lubin Y, Luttermoser T, Maas B, Mace K, Madeira F, Mader V, Cortesero AM, Marini L, Martinez E, Martinson HM, Menozzi P, Mitchell MGE, Miyashita T, Molina GAR, Molina-Montenegro MA, O'Neal ME, Opatovsky I, Ortiz-Martinez S, Nash M, Östman Ö, Ouin A, Pak D, Paredes D, Parsa S, Parry H, Perez-Alvarez R, Perović DJ, Peterson JA, Petit S, Philpott SM, Plantegenest M, Plećaš M, Pluess T, Pons X, Potts SG, Pywell RF, Ragsdale DW, Rand TA, Raymond L, Ricci B, Sargent C, Sarthou JP, Saulais J, Schäckermann J, Schmidt NP, Schneider G, Schüepp C, Sivakoff FS, Smith HG, Stack Whitney K, Stutz S, Szendrei Z, Takada MB, Taki H, Tamburini G, Thomson LJ, Tricault Y, Tsafack N, Tschumi M, Valantin-Morison M, Van Trinh M, van der Werf W, Vierling KT, Werling BP, Wickens JB, Wickens VJ, Woodcock BA, Wyckhuys K, Xiao H, Yasuda M, Yoshioka A, and Zou Y
- Subjects
- Animals, Crops, Agricultural growth & development, Crops, Agricultural parasitology, Ecosystem, Models, Biological, Pest Control, Biological
- Abstract
The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
9. Managing biological control services through multi-trophic trait interactions: review and guidelines for implementation at local and landscape scales.
- Author
-
Perović DJ, Gámez-Virués S, Landis DA, Wäckers F, Gurr GM, Wratten SD, You MS, and Desneux N
- Subjects
- Animals, Agriculture methods, Conservation of Natural Resources, Food Chain, Pest Control methods
- Abstract
Ecological studies are increasingly moving towards trait-based approaches, as the evidence mounts that functions, as opposed to taxonomy, drive ecosystem service delivery. Among ecosystem services, biological control has been somewhat overlooked in functional ecological studies. This is surprising given that, over recent decades, much of biological control research has been focused on identifying the multiple characteristics (traits) of species that influence trophic interactions. These traits are especially well developed for interactions between arthropods and flowers - important for biological control, as floral resources can provide natural enemies with nutritional supplements, which can dramatically increase biological control efficiency. Traits that underpin the biological control potential of a community and that drive the response of arthropods to environmental filters, from local to landscape-level conditions, are also emerging from recent empirical studies. We present an overview of the traits that have been identified to (i) drive trophic interactions, especially between plants and biological control agents through determining access to floral resources and enhancing longevity and fecundity of natural enemies, (ii) affect the biological control services provided by arthropods, and (iii) limit the response of arthropods to environmental filters, ranging from local management practices to landscape-level simplification. We use this review as a platform to outline opportunities and guidelines for future trait-based studies focused on the enhancement of biological control services., (© 2017 Cambridge Philosophical Society.)
- Published
- 2018
- Full Text
- View/download PDF
10. Land-use intensification causes multitrophic homogenization of grassland communities.
- Author
-
Gossner MM, Lewinsohn TM, Kahl T, Grassein F, Boch S, Prati D, Birkhofer K, Renner SC, Sikorski J, Wubet T, Arndt H, Baumgartner V, Blaser S, Blüthgen N, Börschig C, Buscot F, Diekötter T, Jorge LR, Jung K, Keyel AC, Klein AM, Klemmer S, Krauss J, Lange M, Müller J, Overmann J, Pašalić E, Penone C, Perović DJ, Purschke O, Schall P, Socher SA, Sonnemann I, Tschapka M, Tscharntke T, Türke M, Venter PC, Weiner CN, Werner M, Wolters V, Wurst S, Westphal C, Fischer M, Weisser WW, and Allan E
- Subjects
- Animals, Arthropods, Birds, Bryopsida, Chiroptera, Conservation of Natural Resources, Datasets as Topic, Food Chain, Fungi, Germany, Lichens, Plants, Soil Microbiology, Species Specificity, Agriculture, Biodiversity, Grassland, Human Activities
- Abstract
Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity loss could prove to be the most substantial consequence of land-use intensification.
- Published
- 2016
- Full Text
- View/download PDF
11. Landscape simplification filters species traits and drives biotic homogenization.
- Author
-
Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, de Jong H, Simons NK, Klein AM, Krauss J, Maier G, Scherber C, Steckel J, Rothenwöhrer C, Steffan-Dewenter I, Weiner CN, Weisser W, Werner M, Tscharntke T, and Westphal C
- Subjects
- Animals, Arachnida, Bees, Biodiversity, Coleoptera, Diptera, Ecosystem, Germany, Hemiptera, Heteroptera, Larva, Lepidoptera, Agriculture, Biota, Grassland
- Abstract
Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.