1. Acute pericardial postischemic inflammatory responses: Characterization using a preclinical porcine model.
- Author
-
Fatehi Hassanabad A, Turnbull J, Hall C, Schoettler FI, Fatehi Hassanabad M, Love E, de Chantal E, Dundas JA, Isidoro CA, Kim S, Morrish R, McLellan B, Zarzycki AN, Teng G, Belke DD, Har B, Fedak PWM, and Deniset JF
- Subjects
- Animals, Myocardial Reperfusion Injury pathology, Myocardial Reperfusion Injury immunology, Myocardial Reperfusion Injury metabolism, Swine, Pericardial Fluid metabolism, Neutrophils immunology, Neutrophils metabolism, Neutrophils pathology, Sus scrofa, Pericardium pathology, Pericardium immunology, Pericardium metabolism, Macrophages immunology, Macrophages pathology, Macrophages metabolism, Time Factors, Cytokines metabolism, Disease Models, Animal, Inflammation Mediators metabolism
- Abstract
Background: Pericardial fluid (PF) contains cells, proteins, and inflammatory mediators, such as cytokines, chemokines, growth factors, and matrix metalloproteinases. To date, we lack an adequate understanding of the inflammatory response that acute injury elicits in the pericardial space., Objective: To characterize the inflammatory profile in the pericardial space acutely after ischemia/reperfusion., Methods: Pigs were used to establish a percutaneous ischemia/reperfusion injury model. PF was removed from pigs at different time points postanesthesia or postischemia/reperfusion. Flow cytometry was used to characterize the immune cell composition of PF, while multiplex analysis was performed on the acellular portion of PF to determine the concentration of inflammatory mediators. There was a minimum of 3 pigs per group., Results: While native PF mainly comprises macrophages, we show that neutrophils are the predominant inflammatory cell type in the pericardial space after injury. The combination of acute ischemia/reperfusion (IR) and repeatedly accessing the pericardial space significantly increases the concentration of interleukin-1 beta (IL-1β) and interleukin-1 receptor antagonist (IL-1ra). IR significantly increases the pericardial concentration of TGFβ1 but not TGFβ2. We observed that repeated manipulation of the pericardial space can also drive a robust pro-inflammatory response, resulting in a significant increase in immune cells and the accumulation of potent inflammatory mediators in the pericardial space., Conclusion: In the present study, we show that both IR and surgical manipulation can drive robust inflammatory processes in the pericardial space, consisting of an increase in inflammatory cytokines and alteration in the number and composition of immune cells., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF