Laura Tuomi, Norbert Wasmund, Irina Danilovich, Erik Nilsson, Jari Haapala, Martin Drews, Anna Rutgersson, Kirsten Halsnæs, Martin Stendel, Taru Olsson, Kirsti Jylhä, Xiaoli Guo Larsén, Erik Kjellström, Anna Luomaranta, Jani Särkkä, Ilari Lehtonen, Pentti Kujala, Uppsala University, Swedish Meteorological and Hydrological Institute, Finnish Meteorological Institute, Danish Meteorological Institute, National Academy of Sciences of Belarus, Technical University of Denmark, Department of Mechanical Engineering, Leibniz Institute for Baltic Sea Research, Aalto-yliopisto, and Aalto University
Funding Information: The development of approaches for calculating design parameters over the Baltic Sea has provided different estimations through time. The difference in these estimations (more than 10 %) is bigger than the effect from climate change calculated from different climate scenarios (a few percentage points). Climate modelling describes future scenarios and provides a coherent calculation of the whole set of environmental parameters, including wind, temperature, icing, and precipitation. One such output is from the Climate and Energy Systems (CES) research project supported by the Nordic Research Council (Thorsteinsson, 2011). This study features both opportunities and risks within the energy sector associated with climate change up to the mid-21st century. Fifteen combinations of regional and global climate models were used. The results, however, did not portray a consensus on the change in storms and extreme winds in the future over the Scandinavian seas (see also Sect. 2.2.1 and Belusic et al., 2019). Funding Information: Financial support. The contributions of Jari Haapala, Laura Tuomi, and Jani Särkkä have been supported by the Strategic Research Council at the Academy of Finland (SmartSea project; grant no. 292 985). Anna Rutgersson and Erik Nilsson have been supported by FORMAS (grant no. 2018-01784). Xiaoli Guo-Larsen has been supported by the Danish ForskEL/EUDP OffshoreWake project (grant no. PSO-5012521/64017-0017). Irina Danilovich’s studies were conducted as part of the “The Nature Resources and Ecological Safety” sub-programme within the framework of the “The Nature Management and Ecology” state research programme during 2016–2020. The contributions of Taru Olsson and Anna Lu-omaranta have been supported by the National Nuclear Waste Management Fund in Finland, Kirsti Jylhä has been supported by the Academy of Finland HEATCLIM project (grant no. 329307), and Taru Olsson has been supported by the Finnish Cultural Foundation (Satakunta Regional Fund). Publisher Copyright: © 2022 Anna Rutgersson et al. A natural hazard is a naturally occurring extreme event that has a negative effect on people and society or the environment. Natural hazards may have severe implications for human life and can potentially generate economic losses and damage ecosystems. A better understanding of their major causes, probability of occurrence, and consequences enables society to be better prepared to save human lives as well as to invest in adaptation options. Natural hazards related to climate change are identified as one of the Grand Challenges in the Baltic Sea region. Here, we summarize existing knowledge about extreme events in the Baltic Sea region with a focus on the past 200 years as well as on future climate scenarios. The events considered here are the major hydro-meteorological events in the region and include wind storms, extreme waves, high and low sea levels, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. We also address some ecological extremes and the implications of extreme events for society (phytoplankton blooms, forest fires, coastal flooding, offshore infrastructure, and shipping). Significant knowledge gaps are identified, including the response of large-scale atmospheric circulation to climate change and also concerning specific events, for example, the occurrence of marine heat waves and small-scale variability in precipitation. Suggestions for future research include the further development of high-resolution Earth system models and the potential use of methodologies for data analysis (statistical methods and machine learning). With respect to the expected impacts of climate change, changes are expected for sea level, extreme precipitation, heat waves and phytoplankton blooms (increase), and cold spells and severe ice winters (decrease). For some extremes (drying, river flooding, and extreme waves), the change depends on the area and time period studied.