1. The reverse genetic as a potential of virus‐induced gene silencing in tomato biology
- Author
-
Qiong Tang, Sishan Wei, Zexun Chen, Xiaodong Zheng, Pengcheng Tu, and Fei Tao
- Subjects
abiotic and biotic stress resistance ,functional analysis ,plant virus ,tomato ,VIGS vectors ,virus‐induced gene silencing (VIGS) ,Nutrition. Foods and food supply ,TX341-641 ,Food processing and manufacture ,TP368-456 - Abstract
Abstract In the realm of plant genomics, virus‐induced gene silencing (VIGS) technology emerges as a potent tool, employing a reverse genetic strategy to elucidate plant gene functions. Recognized for its simplicity, cost‐effectiveness, and broad applicability, VIGS facilitates the exploration of novel genes in vegetable crops and unveils mechanisms underlying disease resistance and stress response. Moreover, it offers vital support for crop enhancement and molecular breeding. In the context of tomato biology, VIGS holds promise for transformative advancements, spanning from genomics and variety improvement to molecular breeding. This review comprehensively analyzes the pivotal breakthroughs achieved in tomato physiology through global applications of VIGS and explores its strengths and limitations. Future prospects suggest VIGS's pivotal role in reshaping tomato biology, modulating secondary metabolism, and bolstering stress resilience. By delineating diverse applications of VIGS technology, this review fosters innovation in tomato research, opening new vistas for its utilization in plant gene functional analysis.
- Published
- 2024
- Full Text
- View/download PDF