1. Minimum degree conditions for graph rigidity
- Author
-
Krivelevich, Michael, Lew, Alan, and Michaeli, Peleg
- Subjects
Mathematics - Combinatorics ,05C10, 52C25 - Abstract
We study minimum degree conditions that guarantee that an $n$-vertex graph is rigid in $\mathbb{R}^d$. For small values of $d$, we obtain a tight bound: for $d = O(\sqrt{n})$, every $n$-vertex graph with minimum degree at least $(n+d)/2 - 1$ is rigid in $\mathbb{R}^d$. For larger values of $d$, we achieve an approximate result: for $d = O(n/{\log^2}{n})$, every $n$-vertex graph with minimum degree at least $(n+2d)/2 - 1$ is rigid in $\mathbb{R}^d$. This bound is tight up to a factor of two in the coefficient of $d$. As a byproduct of our proof, we also obtain the following result, which may be of independent interest: for $d = O(n/{\log^2}{n})$, every $n$-vertex graph with minimum degree at least $d$ has pseudoachromatic number at least $d+1$; namely, the vertex set of such a graph can be partitioned into $d+1$ subsets such that there is at least one edge between each pair of subsets. This is tight., Comment: 18 pages
- Published
- 2024