208 results on '"Pedro Rojo-Romeo"'
Search Results
2. Ultrafast saturable absorption dynamics in hybrid graphene/Si3N4 waveguides
- Author
-
Pierre Demongodin, Houssein El Dirani, Jérémy Lhuillier, Romain Crochemore, Malik Kemiche, Thomas Wood, Ségolène Callard, Pedro Rojo-Romeo, Corrado Sciancalepore, Christian Grillet, and Christelle Monat
- Subjects
Applied optics. Photonics ,TA1501-1820 - Abstract
We study the nonlinear optical properties of graphene integrated onto Si3N4 waveguides under picosecond and subpicosecond pulsed excitation at telecom wavelength. Saturable absorption of graphene under guided-mode excitation is measured, and the temporal effects related to the photoexcited carrier dynamics in graphene are highlighted. Thereafter, a model of photoexcited carriers in graphene is implemented into the nonlinear Schrödinger equation in order to simulate the pulse propagation across the hybrid graphene/Si3N4 waveguide. This allows us to extract phenomenological parameters of graphene saturable absorption in chip-based devices, which could provide some guidelines for the design of nonlinear elements in photonic integrated circuits.
- Published
- 2019
- Full Text
- View/download PDF
3. Slot ARROW Waveguide: A New Platform for Optical Sensing.
- Author
-
Régis Orobtchouk, Pedro Rojo-Romeo, and Ali Belarouci
- Published
- 2020
- Full Text
- View/download PDF
4. Hybrid silicon-ferroelectric oxide platform for tunable nanophotonics on silicon.
- Author
-
Sébastien Cueff, Pau Castera, Ana M. Gutiérrez, Pedro Rojo-Romeo, Régis Orobtchouk, B. Wague, Bertrand Vilquin, Philippe Regreny, Alvaro Rosa, Todora Ivanova Angelova, Amadeu Griol, Pablo Sanchis, and Guillaume Saint-Girons
- Published
- 2016
- Full Text
- View/download PDF
5. Integration of functional oxides on SOI for agile silicon photonics.
- Author
-
Pedro Rojo-Romeo, X. Hu, Sébastien Cueff, B. Wague, Régis Orobtchouk, Bertrand Vilquin, Romain Bachelet, G. Grenet, Catherine Dubourdieu, Philippe Regreny, Guillaume Saint-Girons, Pau Castera, Ana M. Gutiérrez, Nuria Sanchez, Todora Ivanova Angelova, Pablo Sanchis, Stefan Abel, and Jean Fompeyrine
- Published
- 2015
- Full Text
- View/download PDF
6. Dramatic impact of pressure and annealing temperature on the properties of sputtered ferroelectric HZO layers
- Author
-
Jordan Bouaziz, Pedro Rojo Romeo, Nicolas Baboux, Raluca Negrea, Lucian Pintilie, and Bertrand Vilquin
- Subjects
Biotechnology ,TP248.13-248.65 ,Physics ,QC1-999 - Abstract
The crystallization of ferroelectric (Hf,Zr)O2 thin films is achieved by playing on the deposition pressure during reactive magnetron sputtering from a Hf/Zr metallic target. Postdeposition annealing was tried at different temperatures in order to optimize the quality of the samples. Structural characterizations are performed by transmission electron microscopy (TEM) and electrical characterizations are carried out. TEM analyses reveal that the samples deposited at a low working pressure show no orthorhombic phase, and thus are not ferroelectric, whereas the samples deposited at higher working pressure show the orthorhombic ferroelectric phase. The maximum remnant polarization is 6 µC/cm2 and is obtained for the sample annealed at 600 °C. The maximum cycles to breakdown is higher than 2 × 1010 cycles and is reached for the sample annealed at 400 °C. These results are discussed in the matter of phase transition and oxygen vacancies redistribution.
- Published
- 2019
- Full Text
- View/download PDF
7. Silicon CMOS compatible transition metal dioxide technology for boosting highly integrated photonic devices with disruptive performance.
- Author
-
Pablo Sanchis, L. Sánchez, Pau Castera, Alvaro Rosa, Ana M. Gutiérrez, Antoine Brimont, Guillaume Saint-Girons, Régis Orobtchouk, Sébastien Cueff, Pedro Rojo-Romeo, Romain Bachelet, Philippe Regreny, Bertrand Vilquin, Catherine Dubourdieu, Xavier Letartre, G. Grenet, José Penuelas, X. Hu, L. Louahadj, Jean-Pierre Locquet, L. Zimmermann, Chiara Marchiori, Stefan Abel, Jean Fompeyrine, and A. Hakansson
- Published
- 2014
- Full Text
- View/download PDF
8. Vanadium Oxide Based Waveguide Modulator Integrated on Silicon.
- Author
-
Jimmy John, Régis Orobtchouk, Pedro Rojo-Romeo, Bertrand Vilquin, Zhen Zhang, Shriram Ramanathan, and Sébastien Cueff
- Published
- 2019
- Full Text
- View/download PDF
9. Integration of Amorphous Low Refractive Index Active Materials in Silicon Photonics.
- Author
-
Régis Orobtchouk, Ali Belarouci, Bertrand Vilquin, and Pedro Rojo-Romeo
- Published
- 2019
- Full Text
- View/download PDF
10. Morphological Effects in Photonic Integrated Nanojet.
- Author
-
Ali Belarouci, Oleksii Hudz, Michele Calvo, Pedro Rojo-Romeo, and Régis Orobtchouk
- Published
- 2019
- Full Text
- View/download PDF
11. Influence of the electrode interface on the properties of ferroelectric HfZrO2
- Author
-
Jordan Bouaziz, Greta Segantini, Benoît Manchon, Rabei Barhoumi, Ingrid Cañero Infante, Matthieu Bugnet, Damien Deleruyelle, Nicolas Baboux, Pedro Rojo Romeo, Sharath Sriram, Bertrand Vilquin, École Centrale de Lyon (ECL), Université de Lyon, Royal Melbourne Institute of Technology University (RMIT University), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Dispositifs Electroniques (INL - DE), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), NamLab, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), Vilquin, Bertrand, and Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2022
12. Comparative Study of sub-8 nm HZO-Based Ferroelectric Tunnel Junctions with Enhanced Ferroelectricity
- Author
-
Greta Segantini, Benoit Manchon, Rabei Barhoumi, Pedro Rojo Romeo, Ingrid Cañero Infante, Nicolas Baboux, Mathieu Bugnet, Shruti Nirantar, Damien Deleruyelle, Sharath Sriram, Bertrand Vilquin, Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Royal Melbourne Institute of Technology University (RMIT University), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), European Project: ECLAUSion, Vilquin, Bertrand, Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID, and Marie Skłodowska-Curie grant agreement No 801512 - ECLAUSion - INCOMING
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,Hardware_GENERAL ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; The synthesis of sub-8 nm HZO films that exhibit robust ferroelectricity is a challenging task. Interface engineering is a promising method to improve the electrical performances and the scalability of HZO-based devices. In this work, we propose a comparative study of 6 nm HZO-based ferroelectric tunnel junctions with enhanced ferroelectricity, which will be considered for the demonstration of synaptic learning mechanisms for neuromorphic applications.
- Published
- 2022
13. Study of Polarisation and Conduction Mechanisms in Ferroelectric Hf0.5Zr0.5O2 Down to Deep Cryogenic Temperature 4.2 K
- Author
-
Benoit Manchon, Dorian Coffineau, Greta Segantini, Nicolas Baboux, Pedro Rojo Romeo, Rabei Barhoumi, Ingrid Cañero Infante, Fabien Alibart, Bertrand Vilquin, Dominique Drouin, Damien Deleruyelle, INL - Dispositifs Electroniques (INL - DE), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), Université de Lyon, INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), RMIT University, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), IEEE UFFC, and European Project: 780302,EC | H2020 | RIA,3eFERRO(2018)
- Subjects
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; Two structures, TiN/HZO/TiN and TiN/HZO/AlOx(2nm)/TiN, were fabricated and their electrical properties were studied down to 4.2 K. Low voltage IVs were carried out as well as polarisation-voltage curves at each temperature steps. The aim was to study and compare the evolution of ferroelectric switching and conduction in HZO for both structures. A systematic study of possible charge transport mechanisms was carried out.
- Published
- 2022
14. How to play on the fabrication process of HfZrO2 ferroelectric thin film to enhance its physical properties
- Author
-
Jordan Bouaziz, Greta Segantini, Benoit Manchon, Rabei Barhoumi, Ingrid Cañero Infante, Deleruyelle, D., Nicolas Baboux, Pedro Rojo Romeo, Bertrand Vilquin, INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Materials Research Society, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), European Project: ECLAUSion, Vilquin, Bertrand, Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID, and Marie Skłodowska-Curie grant agreement No 801512 - ECLAUSion - INCOMING
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; Various applications have been suggested for fluorite-structure ferroelectrics due to their advantages over the conventional perovskite-structure ferroelectrics [1]. We focus on (Hf,Zr)O2 (HZO) thin films deposition for the capacitor of Ferroelectric Random Access Memories (FRAM) in the 1Transitor-1Capacitor (1T-1C) model. (Hf,Zr)O2 thin films are studied to either fully understand the stabilization of the ferroelectric phase (f-phase) or to fit with industrial requirements. Changing the pressure in our sputtering chamber during the room temperature deposition lead to the deposition of crystalline or amorphous films at room temperature. After a Rapid Thermal Annealing (RTA), only the amorphous films crystallize in the f-phase. Samples are stacks of Si/TiN/Hf0.5Zr0.5O/TiN/Pt. The samples are called NM, and M: NM and M refers to two different architectures, respectively non-mesa and mesa structures. Fabrication and architecture details can be found in reference [2]. The set-up for electrical measurements have been described in reference [3]. We report the fabrication of two samples deposited by magnetron sputtering. Pr values are among the highest for samples deposited by sputtering. Although the N-sample and NM-samples show very close Pr values, the two samples show completely different electrical behaviors. During cycling, the increase of Pr value for the NM-sample is more than an order of magnitude higher than the M-sample. It is accompanied by a decrease of the endurance which is two order of magnitude higher for the NM-sample than for the M-sample. The origins of the different electrical behaviors come from the micro-crystalline structures of the two samples, according to GIXRD results. The crystallization takes place during the annealing step. During annealing, M-sample is built with a TiN TE fully covering the HZO layer whereas the TiN covers only partially the HZO layer in case of the NM-sample. It induces different stress states which lead to two different micro-crystalline patterning. The M-sample shows no monoclinic peak, whereas the NM-sample shows many monoclinic orientations. It can explain the huge reduction of the wake-up effect. A correlation between long-term retention properties and the wake-up effect is also established: the sample with a reduced wake-up effect has a higher extrapolated polarization value and a smaller retention loss after ten years [4]. [1] M.H. Park, et al. MRS Commun. 1 (2018). [2] J. Bouaziz, et al., ACS Appl. Electron. Mater. 1, 1740 (2019). [3] J. Bouaziz, et al., APL Mater. 7, 081109 (2019). [4] J. Bouaziz, et al., Appl. Phys. Lett. 118, 082901 (2021).
- Published
- 2022
15. SiN half-etch horizontal slot waveguides for integrated photonics: numerical modeling, fabrication, and characterization of passive components
- Author
-
Eva Kempf, Pedro Rojo Romeo, Alban Gassenq, Arnaud Taute, Paul Chantraine, Jimmy John, Ali Belarouci, Stephane Monfray, Frederic Boeuf, Paul G. Charette, and Regis Orobtchouk
- Subjects
Atomic and Molecular Physics, and Optics - Abstract
This work presents a “half-etch” horizontal slot waveguide design based on SiN, where only the upper SiN layer is etched to form a strip that confines the mode laterally. The numerical modeling, fabrication, and characterization of passive waveguiding components are described. This novel slot waveguide structure was designed with on-chip light amplification in mind, for example with an Er-doped oxide spacer layer. Proof-of-concept racetrack resonators were fabricated and characterized, showing quality factors up to 50,000 at critical coupling and residual losses of 4 dB/cm at wavelengths away from the N-H bond absorption peak in SiN, demonstrating the high potential of these horizontal slot waveguides for use in active integrated photonics.
- Published
- 2022
16. A multiscale study of the structure, chemistry and ferroelectric properties of epitaxial sol-gel PbZr0.2Ti0.8O3 films for nanomechanical switching
- Author
-
Infante, Ingrid C., Sergio Gonzalez Casal, Xiaofei Bai, Kevin Alhada‐lahbabi, Sara Gonzalez, Bertrand Vilquin, Pedro Rojo Romeo, David Albertini, Damien Deleruyelle, Nicolas Baboux, Solène Brottet, Bruno Canut, Jean-Paul Barnes, Matthieu Bugnet, Brice Gautier, Canero Infante, Ingrid, INL - Dispositifs Electroniques (INL - DE), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and IEEE UFFC
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,PZT ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ferroelectrics ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials ,thin films ,mechanical domain switching ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND] Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; Polarization switching phenomena in ferroelectrics are complex processes entangled to electronic, chemical and (micro)(nano)structural properties, and intrinsic and extrinsic defects. These phenomena become critical in the framework of ferroelectric nanostructures, e.g. integrated thin films, where interface and surface effects dominate against volume-related properties.Here, we explore the mechanical and electrical polarization switching of ferroelectric thin films of the prototypical tetragonal ferroelectric PbZr0.2Ti0.8O3 (PZT). Using different parameters for sol-gel derived processing and rapid thermal annealing crystallization, we gain control over the electrical properties, chemistry and nanostructure of epitaxial PZT thin films of different thicknesses. The ferroelectric properties determined from microcapacitors indicate that polarization switching under electric field is compatible with out-of-plane c-oriented tetragonal PZT, depicting bulk-like remnant polarization values for films thicker than 100 nm. In capacitors based on films less than 100 nm thick as well as in those undergoing different crystallization processes, a decrease of the measured remnant polarization and the appearance of a leakage current are observed.Piezoresponse force microscopy was used to understand the nanoscale nature of the ferroelectric properties and the polarization switching under different stimuli of these films and environment. Through application of voltage and/or stress using the atomic force microscope tip, and under different electrical boundary conditions, we studied nucleation and switching phenomena in as-grown and in electrically and stress-induced patterned ferroelectric domains. Coercive electric fields and threshold forces required for polarization switching are not only dependent on the conditions of poling, but also on the structure, chemical and electronic properties, and concentration of defects, which we analyzed at different scales using X-ray diffraction and photoemission spectroscopy, scanning electron transmission microscopy, electron energy loss spectroscopy, and Rutherford backscattering and secondary ion mass spectrometry. Phase field simulations of PZT films depicting nanoscale defects support the experimental evidence of the significant contribution of the strain gradient leading to nanomechanical switching.Our results on polarization switching in epitaxial sol-gel derived PZT films will be discussed in the framework of integrated ferroelectric thin films and nanoscale ferroelectric switching for nanomechanical applications in stress sensors.
- Published
- 2022
17. Wake-Up Effect and Retention Evolutions of Hf0.5Zr0.5O2 Capacitor by Nanostructuration Engineering
- Author
-
Jordan Bouaziz, Greta Segantini, Benoit Manchon, Rabei Barhoumi, Infante Ingrid C., Damien Deleruyelle, Nicolas Baboux, Pedro Rojo Romeo, Bertrand Vilquin, Vilquin, Bertrand, Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID, Marie Skłodowska-Curie grant agreement No 801512 - ECLAUSion - INCOMING, École Centrale de Lyon (ECL), Université de Lyon, Institut des Nanotechnologies de Lyon (INL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), IEEE UFFC, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), and European Project: ECLAUSion
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; We report the fabrication of two samples deposited by magnetron sputtering with different nanostructures: mesa (M) and non-mesa(NM). Although the N-sample and NM-samples show very close Pr values, the two samples show completely different electrical behaviors. During cycling, the increase of Pr value for the NM-sample is more than an order of magnitude higher than the M-sample. It is accompanied by a decrease of the endurance which is two order of magnitude higher for the NM-sample than for the M-sample. Retention is also modulated by the nanostructuration.
- Published
- 2022
18. Role of ultra-thin Ti and Al interfacial layers in HfZrO2 ferroelectric tunnel junctions
- Author
-
Greta Segantini, Benoit Manchon, Pedro Rojo Romeo, Rabei Barhoumi, Nicolas Baboux, Infante Ingrid C., Shruti Nirantar, Damien Deleruyelle, Sharath Sriram, Bertrand Vilquin, INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Materials Research Society, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), European Project: ECLAUSion, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Vilquin, Bertrand, Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID, and Marie Skłodowska-Curie grant agreement No 801512 - ECLAUSion - INCOMING
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; In this work, the Hf0.5Zr0.5O2 (HZO) layer was realized by room temperature magnetron sputtering of a HZO ceramic target and subsequently crystallized by rapid thermal annealing [1]. The titanium nitride bottom and top electrodes were grown by reactive magnetron sputtering of a titanium target. We explored the impact of the insertion of an ultra-thin buffer layer at the HZO/top electrode interface on the stabilized crystalline phase, microstructure and electrical properties of thin HZO films. We investigated two materials, Ti and Al. Behind the annealing process Ti and Al turned into TiO2 and Al2O3 respectively, following the creation of oxygen vacancies inside the HZO barrier. The higher concentration of oxygen vacancies promoted by the addition of the buffer layer plays a significant role in the stabilisation of the orthorhombic phase for decreasing HZO thickness. This allowed us to synthesise very thin HZO films with ferroelectric properties. Furthermore we observed a clear improvement of the electrical performances of the n^ Si(001)/TiN/HZO/TiN/Ti/Pt structure. We exploited transmission electron microscopy to investigate the structure and the morphology of the electrode/HZO interfaces. X-ray reflectometry and grazing incidence X-ray diffraction were used to probe the thickness and structural characteristics of HZO layers. X-ray photoemission spectroscopy was used to analyse the chemistry and the electronic state of the HZO/electrode interface. We will discuss our results in the framework of structural, chemical and physical properties of the ferroelectric/electrode interfaces and their effect on the electrical properties of thin HZO-based tunnel junctions. The present optimized stack will eventually be considered for the demonstration of synaptic learning mechanisms for neuromorphic applications. References: [1] J. Bouaziz, P. R. Romeo, N. Baboux, and B. Vilquin, “Huge Reduction of the Wake-Up Effect in Ferroelectric HZO Thin Films,” ACS Appl. Electron. Mater., vol. 1, no. 9, pp. 1740–1745, 2019, doi: 10.1021/acsaelm.9b00367.
- Published
- 2021
19. Huge reduction of wake-up effect in ferroelectric HfZrO2 nanostructures
- Author
-
Bertrand Vilquin, Nicolas Baboux, Pedro Rojo Romeo, Jordan Bouaziz, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), European Materials Research Society, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Vilquin, Bertrand, and Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; We report the fabrication of two samples deposited by magnetron sputtering with excellent performances, quite similar to samples deposited by ALD. The samples are called NM, and M. NM and M refers to two different architectures, respectively non-mesa and mesa structures. Fabrication and architecture details can be found in reference [1]. The set-up for electrical measurements have been described in reference [2, 3]. This set-up allows us to wake the samples with bipolar square pulses. Measurements are performed with a positive up negative down (PUND) sequence. Pr values are among the highest for samples deposited by sputtering. Although the N-sample and NM-samples show very close Pr values, the two samples show completely different electrical behaviors. During cycling, the increase of Pr value for the NM-sample is more than an order of magnitude higher than the M-sample. It is accompanied by a decrease of the endurance which is two order of magnitude higher for the NM-sample than for the M-sample. As electrical behaviors are not the same, for low stress conditions M-sample has a higher Pr value during cycling whereas for high stress conditions NM-sample has a higher Pr value during cycling. As a matter of fact, it has been proven that maximum Pr values are more sensitive to stress conditions than the structures themselves. The origins of the different electrical behaviors come from the micro-crystalline structures of the two samples, according to GIXRD results. The crystallization takes place during the annealing step. During annealing, M-sample is built with a TiN TE fully covering the HZO layer whereas the TiN covers only partially the HZO layer in case of the NM-sample. It induces different stress states which lead to two different micro-crystalline patterning. The M-sample shows no monoclinic peak, whereas the NM-sample shows many monoclinic orientations. It can explain the huge reduction of the wake-up effect. [1] J. Bouaziz, P.R. Romeo, N. Baboux, B. Vilquin, ACS Appl. Electron. Mater. 1, 1740 (2019). [2] J. Bouaziz, P. Rojo Romeo, N. Baboux, R. Negrea, L. Pintilie, B. Vilquin, APL Mater. 7, 081109 (2019). [3] J. Bouaziz, P.R. Romeo, N. Baboux, B. Vilquin, Appl. Phys.Lett. 118, 082901 (2021).
- Published
- 2021
20. Electrical Characterisation of HfZrO2 Ferroelectric Tunnel Junctions for Neuromorphic Application
- Author
-
Benoit Manchon, Greta Segantini, Pedro Rojo Romeo, Nicolas Baboux, Rabei Barhoumi, Infante Ingrid C., Alibart, F., Bertrand Vilquin, Dominique Drouin, Deleruyelle, D., Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), European Materials Research Society, European Project: ECLAUSion, Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Vilquin, Bertrand, and Marie Skłodowska-Curie grant agreement No 801512 - ECLAUSion - INCOMING
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; Ferroelectric Tunnel Junctions (FTJ), which can modulate their electro-resistance depending on the polarisation configuration, have demonstrated multi-state, synaptic behaviour [1]. Hf0.5Zr0.5O2 (HZO) based FTJs are an ideal solution for the industrial implementation of brain inspired computing thanks to the low annealing temperature of HZO and its full compatibility with industrial processes. In this work, we present the development of HZO-based FTJs on silicon substrates and their electrical characterisation. A TiN/HZO/Al2O3/TiN structure was fabricated by reactive magnetron sputtering with 11 nm of HZO crystallised using rapid thermal annealing [2,3]. The dielectric layer of Al2O3 was formed from the deposition of Al and the scavanging of oxygen from the HZO layer, leading to increased conductance and enhancing the asymmetry of the junction to reach higher electro-resistance values. The structural properties were investigated by X-ray reflectometry and grazing incidence X-ray diffraction. Positive-Up-Negative-Down measurements with engineered pulse parameters along with quasi-static current-voltage measurements were conducted to evaluate and control the ferroelectric switching of the devices together with their electro-resistance. Cycling measurements were carried out to investigate the evolution of the polarisation and of the resistance ratio until breakdown. Dominant conduction mechanisms across the junction were evaluated by means of in temperature current-voltage measurements and modelling. References: [1] Boyn, S., Grollier, J., Lecerf, G. et al., Nat Commun 8, 14736 (2017). [2] Bouaziz, J. et al., APL Materials 7, 081109 (2019). [3] Bouaziz, PR Romeo, N Baboux, B VilquinACS Applied Electronic Materials 1, 1740-1745 (2019)
- Published
- 2021
21. Use of epitaxial PZT thin films for La2/3Sr1/3MnO3 based MEMs devices on SrTiO3/Si
- Author
-
Zhe Wang, G. Poullain, Bertrand Vilquin, Laurence Méchin, Victor Pierron, Laryssa Mirelly Carvalho De Araujo, Darrell G. Schlom, Carolina Adamo, Pedro Rojo Romeo, Christophe Cibert, Jacques Junior Manguele, B. Domengès, Equipe Electronique - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), École Centrale de Lyon (ECL), Université de Lyon, Department of Materials Science and Engineering, Cornell University, USA, Cornell University [New York], Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum)
- Subjects
Molecular beam epitaxial growth ,Micromechanical devices ,Materials science ,Epitaxial PZT ,Electromechanical effects ,Magnetic field measurement ,Dielectric polarisation ,Piezoelectric thin films ,Pulsed laser deposition ,Magnetic films ,Zirconium compounds ,PFM ,Lead compounds ,Epitaxy ,Lead zirconate titanate ,Lanthanum compounds ,7. Clean energy ,Dielectric losses ,Fabrication ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,Epitaxial growth ,Electromechanical electrodes ,Expitaxial layers ,Thin film ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Electrodes ,ComputingMilieux_MISCELLANEOUS ,Measurement by laser beam ,Oxide electrodes ,business.industry ,Voltage measurement ,Sputter deposition ,Ferroelectricity ,Piezoelectricity ,Strontium compounds ,chemistry ,Optoelectronics ,business ,Piezoelectric MEMS ,Molecular beam epitaxy - Abstract
International audience; Lead zirconate titanate Pb(Zr,Ti)O 3 (PZT) is a well know ferroelectric material with excellent piezoelectric properties, namely large piezoelectric coefficients, low leakage current and reliable performance, which makes it very suitable as an actuator material in Micro-ElectroMechanical Systems (MEMS). The performance of piezoelectric MEMS is, however, strongly dependent on the film quality. In the present work, the epitaxial growth of PZT is desired as it can help to reduce high-frequency losses, to allow for larger electromechanical coupling and to increase the final device sensitivity. We used an epitaxially grown conductive oxide bottom electrode, namely 45 nm thick La 2/3 Sr 1/3 MnO 3 (LSMO) films, deposited on SrTiO 3 buffered (001) silicon substrates using a combination of pulsed laser deposition and reactive molecular beam epitaxy techniques. The 500 nm thick c-axis oriented PZT layers were deposited at 600°C by magnetron sputtering on the LSMO films on STO/Si (001). The piezoelectric and ferroelectric properties of the PZT layers were studied by PiezoForce Microscopy on as-grown PZT films and Polarization versus Electric field measurements on samples covered with Pt top electrodes. The PZT films exhibited good piezoelectric and ferroelectric properties with a remanent polarization higher than 20 µC·cm −2 , which makes them suitable for the fabrication of piezoelectric MEMS based on doubly-clamped LSMO suspended structures.
- Published
- 2021
- Full Text
- View/download PDF
22. Towards epitaxial Pb(Zr0.52Ti0.48)O3/La2/3Sr1/3MnO3/SrTiO3 based resonant MEMS on Si
- Author
-
Laryssa Carvalho de Araujo, Manguele, J., Bertrand Vilquin, Zhe Wang, Carolina Adamo, Pedro Rojo Romeo, Christophe Cibert, Gilles Poullain, Bernadette Domengès, Victor Pierron, Schlom, Darrell G., Laurence Méchin, Equipe Electronique - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), École Centrale de Lyon (ECL), Université de Lyon, INL - Dispositifs Electroniques (INL - DE), Institut des Nanotechnologies de Lyon (INL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Cornell University [New York], INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Méchin, Laurence, Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), and Department of Materials Science and Engineering, Cornell University, USA
- Subjects
[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2021
23. First principles study on the lattice thermal conductivity of α-phase Ga2O3
- Author
-
Gang Yang, Pedro Rojo Romeo, Aleksandra Apostoluk, and Bertrand Vilquin
- Subjects
Surfaces and Interfaces ,Condensed Matter Physics ,Surfaces, Coatings and Films - Abstract
In this article, lattice thermal conductivity of α-phase Ga2O3 is investigated in a way of combining the first principles calculation and iterative solving the Boltzmann transport equation. Real-space displacement approach is employed in order to obtain both second- and third-order force constants. The effect of the microstructure on lattice thermal conductivity of α-phase Ga2O3 has been extensively studied and widely discussed. The results indicate that α-phase Ga2O3 exhibit a lower thermal conductivity compared with β-phase Ga2O3 in a temperature range from 30 to 800 K. At room temperature, 300 K, the calculated thermal conductivities of α-phase Ga2O3 are 11.61, 9.38, and 8.94 Wm−1 K−1 in the directions [100], [010], and [001], respectively. The lower thermal conductivity of α-phase Ga2O3 can be attributed to the mass difference and bond strength between Ga and O atoms. As for the phonon transport analysis, it is related to the three phonon scattering mechanism. Compared with β-phase Ga2O3, α-phase Ga2O3 exhibits a higher anharmonic phonon scattering rate. Our study aims to help to understand the thermal transport mechanism of α-phase Ga2O3 material and provide useful guidance for the future device applications and enrich the existing state of the art.
- Published
- 2022
- Full Text
- View/download PDF
24. Effect of bottom electrodes on HZO thin film properties
- Author
-
Bertrand Vilquin, Greta Segantini, Benoit Manchon, Ingrid Cañero Infante, Pedro Rojo Romeo, Nicolas Baboux, Deleruyelle, D., Rabei Barhoumi, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), The I3E ECLAUSion project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 801512., and Vilquin, Bertrand
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; The discovery of memristor, theorized in 1971 by L. Chua, has led to the development of novel artificial neuromorphic concepts and devices, including ferroelectric-based ones. Ferroelectric Tunnel Junction (FTJ) type memristors based on zirconium-doped hafnium oxide, Hf_0.5 Zr_0.5 O_2 (HZO) have recently displayed to have synaptic learning capabilities [1]. In addition, HZO processes are already fully compatible with silicon CMOS industry with oxide layers thinner than 10 nm. In the present work, the HZO layer is realized by room temperature magnetron sputtering of a Hf_0.5 Zr_0.5 O_2 ceramic target and subsequently crystallized by rapid thermal annealing [2]. Using different bottom electrode (germanium, titanium nitride, platinum) layers grown on silicon and different substrates (n-doped silicon, n-doped germanium), we studied the effect on the stabilized crystalline phase and microstructure (Fig), band structure alignment and electrical properties of thin HZO films. Furthermore, we explored the effect of ultra-thin buffer layers between the electrodes and the HZO layer, including their material, insertion position and thickness. We exploited X-ray photoemission spectroscopy to analyze the chemistry and the electronic state of the electrodes/HZO interface. X-ray reflectometry and grazing incidence X-ray diffraction (GIXRD) were used to probe the thickness and structural characteristics of the HZO layer, whose ferroelectricity is associated to the polar orthorhombic phase. We will discuss our results in the framework of structural, chemical and physical properties of the different electrode/ferroelectric interfaces and their effect on the electrical properties of thin HZO-based junctions.References:[1] L. Chen et al. Nanoscale, vol. 10, no. 33, pp. 15826–15833, 2018.[2] J Bouaziz, et al., ACS Applied Electronic Materials 1 (9), 1740-1745, 2019.
- Published
- 2021
25. Tracking polarization loss and imprint during electrical tests in sputtered TiN/HZO/TiN capacitors
- Author
-
Bertrand Vilquin, Jordan Bouaziz, Nicolas Baboux, Pedro Rojo Romeo, INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), NamLab, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Vilquin, Bertrand, and Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2021
26. Tunable Mie-Resonant Dielectric Metasurfaces Based on VO 2 Phase-Transition Materials
- Author
-
Shriram Ramanathan, Aditya Tripathi, Regis Orobtchouk, Yuri S. Kivshar, Lotfi Berguiga, Sébastien Cueff, Pedro Rojo Romeo, Zhen Zhang, Sergey Kruk, Jimmy John, Hai Son Nguyen, Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR, ANR-16-CE24-0004,SNAPSHOT,Nano-couches minces commutables pour la photonique sur silicium : vers de nouveaux composants optoélectroniques ultra-efficaces(2016), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Phase transition ,Materials science ,vanadium dioxide ,Holography ,Physics::Optics ,phase-change materials ,02 engineering and technology ,Dielectric ,01 natural sciences ,near-infrared ,law.invention ,spectral modulation ,[SPI.MAT]Engineering Sciences [physics]/Materials ,010309 optics ,Condensed Matter::Materials Science ,Vanadium dioxide ,law ,0103 physical sciences ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Quantum optics ,business.industry ,Near-infrared spectroscopy ,021001 nanoscience & nanotechnology ,metasurfaces ,Atomic and Molecular Physics, and Optics ,Electronic, Optical and Magnetic Materials ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,tunable nanophotonics ,Photonics ,0210 nano-technology ,business ,Biotechnology - Abstract
International audience; Dielectric metasurfaces have become efficient tools for creating ultrathin optical components with various functionalities for imaging, holography, quantum optics, and topological photonics. While static all-dielectric resonant metaphotonics is reaching maturity, challenges remain in the design and fabrication of efficient reconfigurable and tunable metasurface structures. A promising pathway toward tunable metasurfaces is by incorporating phase-transition materials into the photonic structure design. Here we demonstrate Mie-resonant silicon-based metasurfaces tunable via the insulator-to-metal transition of a thin VO2 layer with reversible properties at telecom wavelengths. We experimentally demonstrate two regimes of functional tunability driven by the VO2 transition: (i) 2 orders of magnitude modulation of the metasurface transmission, (ii) spectral tuning of near-perfect absorption. Both functionalities are accompanied by a hysteresis-like behavior that can be exploited for versatile memory effects. Beyond this demonstration of multifunctional properties, this work provides a general framework to efficiently use the full complex refractive index tuning of VO2, for both its refractive index modulation and optical absorption tuning. Tunable dielectric metasurfaces may find their applications in various photonics technologies including optical communications, information storage, imaging, detectors, and sensors.
- Published
- 2021
- Full Text
- View/download PDF
27. The discovery of ferroelectricity in HfO2
- Author
-
Bertrand Vilquin, Nicolas Baboux, Pedro Rojo Romeo, Jordan Bouaziz, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Bangladesh Crystallographic Association, European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Vilquin, Bertrand, and Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; HfO2 is known to exist in three different crystal phases at normal pressure: monoclinic phase at 300K, a tetragonal phase above 2050K, and finally a cubic phase above 2803K. The stable region of the tetragonal phase extends to lower temperatures in nanoscale crystallites due to the surface energy effect. As a consequence, the crystallization in thin films tends to proceed by nucleation in a tetragonal phase and a martensitic transformation to the monoclinic phase during crystal growth. This phase transformation involves volume expansion and shearing of the unit cell. The admixture of sufficient SiO2 (between 5 and 10 mol.%) has been found to stabilize the tetragonal phase in HfO2 but in 2011, it was reported that also the presence of for the formation of ferroelectric and antiferroelectric crystalline phases in SiO2 doped HfO2 thin films [1]. Based on X-ray diffraction measurements, it was argued that the ferroelectric phase is orthorhombic with a Pbc21 space group. The phase is formed due to inhibition of the tetragonal->monoclinic transformation by mechanical confinement. The occurrence of ferroelectricity in Si:HfO2 is remarkable as it represents one of very few metal oxides which are thermodynamically stable on silicon, leading to enable a number of device concepts relying on silicon/ferroelectric heterostructures. In my talk, I will present the different ways to stabilize the ferroelectricity in HfO2, the main properties of the material and the remaining issues [2].References:[1] T.S. Bockle et al., Appl. Phys. Lett. 99, 102903 (2011).[2] J. Bouaziz et al., ACS Applied Electronic Materials 1 (9), 1740 (2019).
- Published
- 2021
28. Mechanical Switching of Ferroelectric Domains in 33‐200 nm‐Thick Sol‐Gel‐Grown PbZr 0.2 Ti 0.8 O 3 Films Assisted by Nanocavities
- Author
-
Sergio Gonzalez Casal, Xiaofei Bai, Kevin Alhada‐Lahbabi, Bruno Canut, Bertrand Vilquin, Pedro Rojo Romeo, Solène Brottet, David Albertini, Damien Deleruyelle, Matthieu Bugnet, Ingrid Canero Infante, and Brice Gautier
- Subjects
Electronic, Optical and Magnetic Materials - Published
- 2022
- Full Text
- View/download PDF
29. Hybrid chip-based nonlinear optical devices using graphene
- Author
-
Christelle Monat, Pierre Demongodin, Jérémy Lhuillier, Milan Sinobad, Houssein El Dirani, Crochemore, R., Corrado Sciancalepore, Thomas Wood, Malik Kemiche, Radoslav Mazurczyk, Philippe Regreny, Pedro Rojo Romeo, Bertrand Vilquin, Xavier Letartre, Ségolène Callard, Sébastien Cueff, Christian Grillet, Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), grillet, christian, GRAphene nonlinear PHotonic Integrated CircuitS - GRAPHICS - - H20202015-09-01 - 2020-09-01 - 648546 - VALID, and Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic - Abstract
International audience; The recent development of silicon photonics, namely based on Si and Si derivative materials (e.g. Si3N4), has enabled the integration of a wide range of optical devices onto the same chip. However, due the intrinsic limitations of silicon, some devices cannot be efficiently integrated in silicon monolithic architectures. III-V/ Si wafer bonding and LiNBO3 thin film technologies have already provided a path to increase the functionalities that can be heterogeneously integrated onto silicon chips, now turned hybrid [1]. Two-dimensional materials represent another promising route to complement the properties of silicon and create compact hybrid architectures with novel functionalities. The most mature of these 2D materials, graphene, has attracted lots of attention as it exhibits attractive nonlinear optical properties, such as a large photo-refractive Kerr index, and saturable absorption, which might be interesting for nonlinear photonic chips and all-optical information processing. While its intrinsic properties are relatively high for a monolayer-thick material, the use of integrated optics provides a way to enhance the otherwise low absolute response of this 2D material. Besides, the capability of tuning graphene optical properties provides an additional advantage to realize on-demand and reconfigurable nonlinear photonic devices. I will here discuss some of these developments, including our recent demonstration of hybrid graphene/ Si3N4 waveguides for chip-based saturable absorbers [2]. Our work also shows that hybrid graphene coated waveguides provide a relevant platform to unravel the dynamics of graphene nonlinear optical properties. Finally, some limitations of graphene nonlinear properties lead us to explore, with our Australian collaborators, alternative 2D materials such as graphene oxide [3], which might represents an interesting trade-off in terms of linear absorption and nonlinearity.
- Published
- 2020
30. Low-voltage, broadband graphene-coated Bragg mirror electro-optic modulator at telecom wavelengths
- Author
-
Thomas, Wood, Jérémy, Lhuillier, Malik, Kemiche, Pierre, Demongodin, Bertrand, Vilquin, Pedro Rojo, Romeo, Ali, Belarouci, Lotfi, Berguiga, Ségolène, Callard, Xavier, Letartre, and Christelle, Monat
- Abstract
We demonstrate a graphene based electro-optic free-space modulator yielding a reflectance contrast of 20% over a strikingly large 250nm wavelength range, centered in the near-infrared telecom band. Our device is based on the original association of a planar Bragg reflector, topped with an electrically contacted double-layer graphene capacitor structure employing a high work-function oxide shown to confer a static doping to the graphene in the absence of an external bias, thereby reducing the switching voltage range to +/-1V. The device design, fabrication and opto-electric characterization is presented, and its behavior modeled using a coupled optical-electronic framework.
- Published
- 2020
31. Slot ARROW Waveguide: A New Platform for Optical Sensing
- Author
-
Ali Belarouci, Regis Orobtchouk, Pedro Rojo-Romeo, Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Fabrication ,business.industry ,Physics::Optics ,Optical ring resonators ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Cladding (fiber optics) ,Waveguide (optics) ,law.invention ,020210 optoelectronics & photonics ,law ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Photolithography ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business ,ARROW waveguide ,Plasmon ,ComputingMilieux_MISCELLANEOUS - Abstract
The realization of high sensitivity integrated photonic sensors requires strong light/matter interaction. Unfortunately, in an optical waveguide, only the evanescent part of the mode interacts with the cladding medium under test. In this context, we have patented a new concept of waveguide [1] called “Slot ARROW”, where the major part of the light is confined in the cladding such as metallic plasmonic and dielectric slot waveguides. This paper presents the modelling, the fabrication and the optical characterization of slot ARROW waveguides. Optical modelling shows that the main advantages of Slot ARROW waveguides are a reduction of propagation losses and the sustaining monomode condition for widths 100 times larger than the slot or plasmonic waveguides. The fabrication process is more robust as it only needs the structuration of the upper layer with standard optical lithography and a RIE etching step. The critical lateral dimension is relaxed to $0.9\ \mu \mathrm{m}$ compared to $0.1\ \mu \mathrm{m}$ for the grooves of slot or plasmonic 2D waveguides. Basic building blocks for optical routing have been designed and preliminary characterizations demonstrate the validity of this new concept.
- Published
- 2020
- Full Text
- View/download PDF
32. Towards active photonic dispersion control using graphene-induced non-radiative loss
- Author
-
Geneviève Grenet, Malik Kemiche, Thomas Wood, Jérémy Lhuillier, Sébastien Cueff, Christelle Monat, Xavier Letartre, Pierre Demongodin, Bertrand Vilquin, Pedro Rojo-Romeo, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and INL - Matériaux Fonctionnels et Nanostructures (INL - MFN)
- Subjects
Materials science ,business.industry ,Graphene ,Oxide ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Spatial modulation ,law.invention ,010309 optics ,chemistry.chemical_compound ,chemistry ,law ,0103 physical sciences ,Dispersion (optics) ,Radiative transfer ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Photonics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,Absorption (electromagnetic radiation) ,business - Abstract
International audience; We show that the photonic dispersion of a two coupled-mode system can be actively tuned using graphene-induced non-radiative loss. Our implementation exploits the spatial modulation of graphene's absorption via patterned oxide substrates.
- Published
- 2020
- Full Text
- View/download PDF
33. Tunable Mie-resonant dielectric metasurfaces based on VO2 phase-change materials
- Author
-
Lotfi Berguiga, Shriram Ramanathan, Jimmy John, Hai Son Nguyen, Yuri S. Kivshar, Sergey Kruk, Pedro Rojo Romeo, Zhen Zhang, Sébastien Cueff, Regis Orobtchouk, Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE24-0004,SNAPSHOT,Nano-couches minces commutables pour la photonique sur silicium : vers de nouveaux composants optoélectroniques ultra-efficaces(2016)
- Subjects
0303 health sciences ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Materials science ,Silicon ,Physics::Instrumentation and Detectors ,business.industry ,Physics::Optics ,chemistry.chemical_element ,02 engineering and technology ,Dielectric ,Chemical vapor deposition ,021001 nanoscience & nanotechnology ,Amplitude modulation ,Split-ring resonator ,03 medical and health sciences ,Reflection (mathematics) ,chemistry ,Modulation ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,0210 nano-technology ,business ,Order of magnitude ,030304 developmental biology - Abstract
International audience; We demonstrate Mie-resonant silicon metasurfaces tunable via the insulator-to-metal transition of a deposited VO2 layer. We observe two orders of magnitude modulation depth of the metasurface reflection with reversible properties and a hysteresis-like behavior. OCIS codes: (160.4236) Nanomaterials; (310.6628) Subwavelength structures, nanostructures; (220.4241) Nanostructure fabrication 1. Introduction Metasurfaces have emerged as a flexible and efficient platform for manipulating electromagnetic waves. Although there has been a considerable progress in the development of plasmonic metasurfaces, some of their functionalities remain compromised by Ohmic losses and heating. More recent developments suggest an alternative way towards highly efficient metasurfaces based on Mie-resonant nanostructures made of high-index dielectric materials [1]. While static all-dielectric resonant metaphotonics is reaching maturity, big challenges remain in the design and fabrication of efficient reconfigurable and tunable structures [2] that are highly desirable for a number of applications in optical communications, information storage, imaging, detectors, and sensors. A promising pathway towards tunable metasurfaces is an incorporation of phase-change materials into the design. While substantial efforts have been made towards tunable nanophotonic devices made of metallic nanostructures coupled to various phase-change materials such as GeSbTe, VO2, etc. [2-4], all-dielectric tunable nanostructures remain largely unexplored. In particular, VO2 is an attractive phase-change material [5] and its tunability occurs at temperatures close to ambient (~68°C). The transition can be triggered thermally, optically, or electrically. Furthermore, the dynamical change of phase corresponds to a crystalline-to-crystalline transition and therefore not accompanied by catastrophic volume change, void creation, etc, enabling a hybrid integration of this material into complex nanostructures. Therefore, VO2 is compatible with materials and/or technologies that cannot support thigh temperatures and high energy pulses needed to switch back and forth other phase-change materials such as GST. Nanofabrication of VO2 remains largely premature, and its hybrid integration with dielectric nanophotonics imposes significant challenges.
- Published
- 2020
- Full Text
- View/download PDF
34. Improving silicon nitride ring resonator performances on 300 mm industrial environment for point of care applications (Conference Presentation)
- Author
-
Romain Stricher, Michele Calvo, Pauline Girault, Laurence Mercier-Coderre, Michael Canva, Regis Orobtchouk, Paul G. Charette, Guillaume Beaudin, Serge Ecoffey, Stephane Monfray, Pedro Rojo-Romeo, Dominique Drouin, Frederic Boeuf, Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), STMicroelectronics [Crolles] (ST-CROLLES), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,business.industry ,media_common.quotation_subject ,Ring (chemistry) ,[SPI]Engineering Sciences [physics] ,Resonator ,Presentation ,chemistry.chemical_compound ,Silicon nitride ,chemistry ,Optoelectronics ,business ,ComputingMilieux_MISCELLANEOUS ,Point of care ,media_common - Abstract
International audience
- Published
- 2020
- Full Text
- View/download PDF
35. Structural studies of epitaxial BaTiO3 thin film on silicon
- Author
-
Bertrand Vilquin, Pedro Rojo-Romeo, Yves Robach, L. Dai, Baba Wague, Pascal Roy, J.-B. Brubach, G. Dong, Guillaume Saint-Girons, Gang Niu, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), and Université de Lyon
- Subjects
Materials science ,Silicon ,Infrared spectroscopy ,chemistry.chemical_element ,02 engineering and technology ,Epitaxy ,01 natural sciences ,Crystallinity ,Phase (matter) ,0103 physical sciences ,Materials Chemistry ,Thin film ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,Metals and Alloys ,Surfaces and Interfaces ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Ferroelectricity ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; Keywords: Ferroelectricity Thin films Silicon Epitaxy Radio-frequency magnetron sputtering Infrared spectroscopy Phonon A B S T R A C T BaTiO 3 thin films (60 nm-thick) grown on SrTiO 3 /Si templates have been characterized for their structural and electrical properties. The epitaxy of the BaTiO 3 film on silicon was confirmed by X-ray diffraction with good crystallinity. The temperature-dependent structural properties were checked by infrared spectroscopy in absorption mode. The films were found to remain in a single ferroelectric phase over a temperature range from 5 to 385 K. Low-temperature orthorhombic-rhombohedral phase transitions characteristic of bulk BaTiO 3 are absent in the films due to the clamping effect from the Si substrate.
- Published
- 2020
- Full Text
- View/download PDF
36. Towards low-power near-infrared modulators operating at telecom wavelengths: when graphene plasmons frustrate their metallic counterparts
- Author
-
Jérémy Lhuillier, Pierre Demongodin, Xavier Letartre, Philippe Regreny, Aziz Benamrouche, Malik Kemiche, Christelle Monat, Ségolène Callard, Pedro Rojo-Romeo, Thomas Wood, Bertrand Vilquin, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), H2020 ERC project, European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics::Optics ,02 engineering and technology ,Coupled mode theory ,7. Clean energy ,01 natural sciences ,law.invention ,010309 optics ,Resonator ,law ,0103 physical sciences ,Surface plasmon resonance ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Plasmon ,Graphene ,business.industry ,Statistical and Nonlinear Physics ,021001 nanoscience & nanotechnology ,Surface plasmon polariton ,Atomic and Molecular Physics, and Optics ,Wavelength ,Excited state ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; A free-space electro-optic modulator device exploiting graphene's surface plasmon polariton (SPP) at near-infrared frequencies is proposed and theoretically studied. The device is made up of two resonant structures, the first being a metallic SPP displaying broadband absorption, and the second graphene's own SPP, which is shown to frustrate the metallic plasmon when excited, leading to a narrow reflectance peak. Doping of the graphene to achieve Fermi-level tuning is shown to shift the wavelength of the frustration phenomenon, thereby enabling the use of the device as a modulator. A reduction of 20% in the switching energy is expected due to the unique principle of operation which, crucially and contrary to most work in this field, does not rely on electroabsorption but electrorefraction changes in graphene. This coupled SPP resonator geometry also permits efficient channeling of optical energy from free space into graphene's SPP at near-infrared frequencies.
- Published
- 2020
- Full Text
- View/download PDF
37. Ferroelectricity Improvement in Ultra‐Thin Hf0.5Zr0.5O2 Capacitors by the Insertion of a Ti Interfacial Layer
- Author
-
Greta Segantini, Rabei Barhoumi, Benoît Manchon, Ingrid Cañero Infante, Pedro Rojo Romeo, Matthieu Bugnet, Nicolas Baboux, Shruti Nirantar, Damien Deleruyelle, Sharath Sriram, Bertrand Vilquin, INL - Matériaux Fonctionnels et Nanostructures (INL - MFN), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Functional Materials and Microsystems, Research Group and Micro Nano Research Facility, RMIT University, Melbourne 3001, Victoria, Australia, INL - Dispositifs Electroniques (INL - DE), Laboratoire Nanotechnologies et Nanosystèmes [Sherbrooke] (LN2), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), This work was undertaken on the NanoLyon technology platform and received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 780302 (3eFERRO), under the Marie Sklodowska-Curie Grant Agreement no. 801512 (i3E ECLAUSion), and French Public Authorities through the NANO2022 program., European Project: ECLAUSion, and European Project: 780302,EC | H2020 | RIA,3eFERRO(2018)
- Subjects
ferroelectric tunnel junction ,[SPI]Engineering Sciences [physics] ,ferroelectric HZO ,capacitors ,Interface layers ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Condensed Matter Physics - Abstract
International audience; The effect at the nanoscale of a Ti interfacial layer on the performances of TiN/HfZrO2/TiN capacitors is reported. Ferroelectric hafnium zirconium oxide (HZO) is synthesized by magnetron sputtering of a Hf0.5Zr0.5O2 ceramic target. Titanium nitride top and bottom electrodes are grown by reactive magnetron sputtering. The insertion of an ultra-thin Ti layer at the top electrode/HZO interface impacts the crystalline phase and the electrical properties of the ferroelectric HZO. Following post-deposition annealing, the Ti layer is oxidized and becomes titanium oxide. Compositional and structural characterization is performed using glancing incidence X-Ray diffraction and electron energy-loss spectroscopy. The TiOz layer is clearly distinguishable at the top electrode/HZO interface. Electrical characterization is conducted by positive-up-negative-down (PUND) technique. The remnant polarization reaches a maximum value of 25 μCcm^(-2) for 6 nm thick HZO. The results are discussed in the framework of structural, compositional, and physical properties of the electrode/HZO interfacesand their effect on the electrical performances of thin HZO-based junctions, which could subsequently be considered for the demonstration of synaptic learning mechanisms for neuromorphic applications.
- Published
- 2022
- Full Text
- View/download PDF
38. Ferroelectric HfZrO2 thin films for IoT applications
- Author
-
Bertrand Vilquin, Jordan Bouaziz, Nicolas Baboux, Pedro Rojo Romeo, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Spectroscopies et Nanomatériaux (INL - S&N), INL - Dispositifs Electroniques (INL - DE), INL - Nanophotonique (INL - Photonique), and Vilquin, Bertrand
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,ComputingMilieux_MISCELLANEOUS ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience
- Published
- 2019
39. Ferroelectric HfO2 based devices fabrication and remaining issues
- Author
-
Bertrand Vilquin, Jordan Bouaziz, Nicolas Baboux, Pedro Rojo Romeo, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Spectroscopies et Nanomatériaux (INL - S&N), INL - Dispositifs Electroniques (INL - DE), INL - Nanophotonique (INL - Photonique), European Project: 780302,EC | H2020 | RIA,3eFERRO(2018), IEEE, Vilquin, Bertrand, Energy Efficient Embedded Non-volatile Memory Logic based on Ferroelectric Hf(Zr)O2 - 3eFERRO - - EC | H2020 | RIA2018-01-01 - 2021-06-30 - 780302 - VALID, Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[CHIM.MATE] Chemical Sciences/Material chemistry ,Hardware_MEMORYSTRUCTURES ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; New computer generations require micro-processors in close proximity to non-volatile memories (NVM), both working with low power consumption and high write speed. Since current FLASH technology cannot perform at these specifications, new memory solutions are necessary. Novel HfO2 based NVM cells could offer the required properties and have the advantage that HfO2 is already known for its compatibility with CMOS processing as shown in standard state-of-the-art logic nodes. In contrast, current FRAM products on the market are limited by the properties of the ferroelectric PbZrTiO3 material resulting in scaling limitations. With the discovery of ferroelectricity in doped HfO2 the introduction into scaled non-volatile memory devices based on a one-transistor one-capacitor (1T-1C FRAM) or a one-transistor (1T FeFET) cell became possible. HfO2 shows ferroelectric properties when doped with a variety of different dopants in ~5-20 nm thin thickness range which enables further scaling of current memory devices. This presentation presents the current status of hafnium oxide material and based memory devices and their remaining issues.
- Published
- 2019
40. Huge Reduction of the Wake-Up Effect in Ferroelectric HZO Thin Films
- Author
-
Jordan Bouaziz, Bertrand Vilquin, Pedro Rojo Romeo, Nicolas Baboux, INL - Spectroscopies et Nanomatériaux (INL - S&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), INL - Dispositifs Electroniques (INL - DE), and INL - Hétéroepitaxie et Nanostructures (INL - H&N)
- Subjects
Materials science ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,Wake ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Reduction (complexity) ,0103 physical sciences ,Materials Chemistry ,Electrochemistry ,Thin film ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,business.industry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Sputter deposition ,021001 nanoscience & nanotechnology ,Ferroelectricity ,Electronic, Optical and Magnetic Materials ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,Tin ,business - Abstract
The wake-up effect is a major issue for ferroelectric HfO2-based memory devices. Here, two TiN/HZO/TiN structures deposited by magnetron sputtering on silicon are compared. The maximum remanant pol...
- Published
- 2019
- Full Text
- View/download PDF
41. Morphological Effects in Photonic Integrated Nanojet
- Author
-
Pedro Rojo Romeo, Michele Calvo, Ali Belarouci, Regis Orobtchouk, Oleksii Hudz, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nanotechnologies Nanosystèmes (LN2 ), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), and Université de Sherbrooke (UdeS)
- Subjects
3D optical data storage ,Materials science ,Scattering ,business.industry ,Photonic integrated circuit ,Physics::Optics ,02 engineering and technology ,Waveguide (optics) ,Biophotonics ,Wavelength ,020210 optoelectronics & photonics ,Optics ,Nanolithography ,0202 electrical engineering, electronic engineering, information engineering ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Photonics ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
We report a study of the shape-dependent optical response of a photonic nanojet created by a single Si x N y microdisk illuminated by a waveguide. High intensity sub-wavelength spots and low divergence nanojets are observed at the telecommunication wavelengths. Light scattered from the disk is observed by imaging from above. The electromagnetic distributions inside and outside the microdisk are calculated by using finite-difference-time-domain method and compared to the experimental image. We demonstrate that small morphology variations can have a major impact on the optical properties of the entire system. These results deepen our understanding between the disk morphology and its optical response and provide insight toward potential applications in high-resolution optical imaging, biophotonics, and optical data storage.
- Published
- 2019
- Full Text
- View/download PDF
42. Vanadium Oxide Based Waveguide Modulator Integrated on Silicon
- Author
-
Pedro Rojo-Romeo, Bertrand Vilquin, Zhen Zhang, Shriram Ramanathan, Jimmy John, Sébastien Cueff, Regis Orobtchouk, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Purdue University [West Lafayette], and ANR-16-CE24-0004,SNAPSHOT,Nano-couches minces commutables pour la photonique sur silicium : vers de nouveaux composants optoélectroniques ultra-efficaces(2016)
- Subjects
Silicon photonics ,Materials science ,Silicon ,business.industry ,Transmission loss ,Physics::Optics ,chemistry.chemical_element ,law.invention ,Semiconductor ,chemistry ,law ,Modulation ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,Light emission ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Refractive index ,Waveguide - Abstract
International audience; Silicon photonics is now a mature field of research with efficient passive building blocks such as waveguides, routers and modulators. Silicon, as a material though, is not the best material for light emission and electro-optical modulation functionalities. To circumvent those limitations, researchers integrate heterogeneous materials such as for example III-V semiconductors, rare-earth-doped oxides and ferroelectric oxides on silicon. In this communication, we present a simple and innovative straight waveguide modulator design based on the phase change properties of Vanadium dioxide (VO2). VO2 is a strongly correlated material with unique insulator-to-metal transition (IMT) property. This IMT is accompanied by a structural modification as well as an extremely large modulation of the refractive index in the near-infrared range. We leverage this strong optical tunability in hybrid Silicon/VO2 waveguides for optical modulation. Specifically, by spatially separating the modulator from the bus waveguide, we both exploit the changes in refractive index and extinction coefficients to maximize modulation as well as minimize transmission loss. We will show how our design enable compact and efficient devices that can be readily integrated on standard Silicon photonics platform. We further discuss on the latest experimental results, expected performances compared to the state-of-the-art and future devices. We acknowledge funding from the French National Research Agency (ANR) under the project SNAPSHOT (ANR-16-CE24-0004)
- Published
- 2019
- Full Text
- View/download PDF
43. Ultrafast saturable absorption dynamics in hybrid graphene/Si 3 N 4 waveguides
- Author
-
Pierre Demongodin, Houssein El Dirani, Jérémy Lhuillier, Romain Crochemore, Malik Kemiche, Thomas Wood, Ségolène Callard, Pedro Rojo-Romeo, Corrado Sciancalepore, Christian Grillet, Christelle Monat, INL - Ingénierie et conversion de lumière (i-Lum) (INL - I-Lum), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), H2020 ERC European Project, European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2019
- Full Text
- View/download PDF
44. Saturable absorption of nonlinear graphene coated waveguides
- Author
-
Christelle Monat, Ségolène Callard, Houssein El Dirani, Pedro Rojo-Romeo, Thomas Wood, Christian Grillet, Corrado Sciancalepore, Malik Kemiche, Pierre Demongodin, Jérémy Lhuillier, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), H2020 EU project, European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Demongodin, Pierre
- Subjects
Silicon nitride ,Nonlinear photonics ,Materials science ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,02 engineering and technology ,01 natural sciences ,law.invention ,010309 optics ,chemistry.chemical_compound ,Four-wave mixing ,law ,0103 physical sciences ,ComputingMilieux_MISCELLANEOUS ,Graphene ,business.industry ,graphene ,guided-wave optics ,Saturable absorption ,021001 nanoscience & nanotechnology ,Wavelength ,Nonlinear system ,chemistry ,Mode-locking ,Picosecond ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Optoelectronics ,0210 nano-technology ,business - Abstract
International audience; We investigate the saturable absorption of hybrid graphene/ silicon-nitride waveguides at telecom wavelengths. By measuring the power dependent transmission of picosecond and sub-picosecond pulses, we clarify the temporal dynamics of photo-excited carriers in graphene.
- Published
- 2019
- Full Text
- View/download PDF
45. Impact of the channel length on molybdenum disulfide field effect transistors with hafnia-based high-k dielectric gate
- Author
-
Pedro Rojo Romeo, Wei Ren, Dai Liyan, Wu Heping, Bertrand Vilquin, Ya-Hong Xie, Jordan Bouaziz, Yankun Wang, Gang Niu, Yanxiao Sun, Jiang Luyue, Jinyan Zhao, INL - Hétéroepitaxie et Nanostructures (INL - H&N), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,QC1-999 ,General Physics and Astronomy ,Field effect ,02 engineering and technology ,Dielectric ,7. Clean energy ,01 natural sciences ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,0103 physical sciences ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,High-κ dielectric ,010302 applied physics ,business.industry ,Physics ,Transistor ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Ferroelectricity ,Threshold voltage ,Hysteresis ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Field-effect transistor ,0210 nano-technology ,business - Abstract
International audience; Field effect transistors (FETs) using two-dimensional molybdenum disulfide (MoS 2) as the channel material has been considered one of the most potential candidates for future complementary metal-oxide-semiconductor technology with low power consumption. However, the understanding of the correlation between the device performance and material properties, particularly for devices with scaling-down channel lengths, is still insufficient. We report in this paper back-gate FETs with chemical-vapor-deposition grown and transferred MoS 2 and Zr doped HfO 2 ((Hf,Zr)O 2 , HZO) high-k dielectric gates with channel lengths ranging from 10 to 30 μm with a step of 5 μm. It has been demonstrated that channels with the length to width ratio of 0.2 lead to the most superior performance of the FETs. The MoS 2 /HZO hybrid FETs show a stable threshold voltage of ∼1.5 V, current on/off ratio of >10 4 , and field effect mobility in excess of 0.38 cm 2 V −1 s −1. The impact of the channel lengths on FET performance is analyzed and discussed in depth. A hysteresis loop has been observed in the I ds − Vgs characteristics of the hybrid FETs, which has been further studied and attributed to the charge effect at the interfaces. The HZO films show a relatively weak ferroelectric orthorhombic phase and thus serve mainly as the high-k dielectric gate. Charge trapping in the HZO layer that might induce hysteresis has been discussed. Our results show that MoS 2 /HZO hybrid FETs possess great potential in future low power and high-speed integrated circuits, and future work will focus on further improvement of the transistor performances using ferroelectric HZO films and the study of devices with even shorter MoS 2 channels.
- Published
- 2021
- Full Text
- View/download PDF
46. Ring Resonator Designed for Biosensing Applications Manufactured on 300 mm SOI in an Industrial Environment
- Author
-
Michele Calvo, Stephane Monfray, Sylvain Guerber, Charles Baudot, Regis Orobtchouk, Pedro Rojo Romeo, Paul G. Charette, F. Bœuf, Guillaume Beaudin, Michael Canva, Laboratoire Nanotechnologies Nanosystèmes (LN2 ), Université de Sherbrooke (UdeS)-École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Interdisciplinaire d'Innovation Technologique [Sherbrooke] (3IT), Université de Sherbrooke (UdeS), Centre de Nanosciences et de Nanotechnologies [Marcoussis] (C2N), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), STMicroelectronics, STMicroelectronics [Crolles] (ST-CROLLES), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,[SDV]Life Sciences [q-bio] ,General Engineering ,General Physics and Astronomy ,Silicon on insulator ,02 engineering and technology ,Ring (chemistry) ,01 natural sciences ,010309 optics ,Resonator ,[SPI]Engineering Sciences [physics] ,020210 optoelectronics & photonics ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Optoelectronics ,business ,Biosensor ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
47. Slow Light Dispersion Engineering of Active Photonic Crystal Cavities for Compact and Integrated Mode-Locked Lasers
- Author
-
Xavier Letartre, Malik Kemiche, Radoslaw Mazurczyk, Pedro Rojo-Romeo, Philippe Regreny, Aziz Benamrouche, Jérémy Lhuillier, Thomas Wood, Ségolène Callard, Christelle Monat, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Hétéroepitaxie et Nanostructures (INL - H&N), European Project: 648546,H2020,ERC-2014-CoG,GRAPHICS(2015), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Dispersion engineering ,Materials science ,business.industry ,Physics::Optics ,02 engineering and technology ,Chip ,Laser ,Slow light ,law.invention ,020210 optoelectronics & photonics ,law ,Dispersion (optics) ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,0202 electrical engineering, electronic engineering, information engineering ,Laser mode locking ,Optoelectronics ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,business ,Photonic crystal - Abstract
International audience; We realize compact active photonic crystal cavities for miniaturized chip-based pulsed lasers. We experimentally validate our approach relying on slow-light dispersion engineering for sustaining the intended regular comb of modes from a 30 µm long cavity.
- Published
- 2018
- Full Text
- View/download PDF
48. Vers la réalisation de composants optiques nonlinéaires intégrés sur puce exploitant du graphène
- Author
-
Alexandra Pavlova, Malik Kemiche, Jérémy Lhuillier, Thomas Wood, Radoslaw Mazurczyk, Philippe Regreny, Pedro Rojo Romeo, Bertrand Vilquin, christian grillet, Ségolène Callard, Xavier Letartre, Christelle Monat, Inl, Laboratoire INL UMR5270, INL - Nanophotonique (INL - Photonique), Institut des Nanotechnologies de Lyon (INL), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), INL - Plateforme Technologique Nanolyon (INL - Nanolyon), INL - Hétéroepitaxie et Nanostructures (INL - H&N), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-École Centrale de Lyon (ECL), Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), and Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
- Subjects
[PHYS]Physics [physics] ,[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.MAT]Engineering Sciences [physics]/Materials ,[PHYS] Physics [physics] - Abstract
3-7 juillet 2017; International audience; no abstract
- Published
- 2017
49. Phase transition in ferroelectric Pb(Zr0.52Ti0.48)O3 epitaxial thin films
- Author
-
Jose Penuelas, Bertrand Vilquin, Nicolas Baboux, A.S. Borowiak, Yves Robach, M. Piquemal, Brice Gautier, Aziz Benamrouche, C. Eypert, Olivier Marconot, Pedro Rojo-Romeo, and Qiang Liu
- Subjects
Phase transition ,Phase boundary ,Materials science ,Metals and Alloys ,Analytical chemistry ,Surfaces and Interfaces ,Ferroelectricity ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Tetragonal crystal system ,Ellipsometry ,Phase (matter) ,visual_art ,Materials Chemistry ,visual_art.visual_art_medium ,Ceramic ,Thin film ,Composite material - Abstract
PbZr 1 − x Ti x O3 (PZT) has been intensively studied for various ferroelectric applications. Its promising application for micro-electro-mechanical system has reignited the interests due to its outstanding ferroelectric and piezoelectric properties. Most PZT ceramics employed in devices are synthesized with a Zr/Ti ratio close to the tetragonal–rhombohedral morphotropic phase boundary ( x = 0.48) due to its high electro-mechanical coupling at this composition. Morphotropic phase boundary is particularly interesting to study for the investigation of phase transition. In this work, we report the epitaxial growth and electrical characterization of epitaxial PZT (Zr/Ti = 52/48) thin films on Nb-doped SrTiO3. PZT films, with thickness from 30 nm to 65 nm, were deposited by sol–gel method and eventually crystallized at 700 °C by rapid thermal annealing in oxygen. Film ferroelectricity was confirmed by Sawyer–Tower circuit measurement. X-ray diffraction analysis indicates a thickness-dependent structural phase, i.e., a phase transition from tetragonal phase for the thinner film to a biphasic (tetragonal + pseudo-cubic) structure for the thicker film, which is characterized by ellipsometry as a phase separation from the bottom surface of the film to the top one. This phase transition is related to a composition gradient within the film thickness.
- Published
- 2014
- Full Text
- View/download PDF
50. Towards an Integrated Mode-Locked Microlaser Based on Two-Dimensional Photonic Crystals and Graphene
- Author
-
Xavier Letartre, Alexandra Pavlova, Pedro Rojo-Romeo, P. Regreny, Christelle Monat, Pierre Viktorovitch, Elena D. Obraztsova, and Christian Seassal
- Subjects
Materials science ,business.industry ,Graphene ,Mode (statistics) ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,law.invention ,law ,Optoelectronics ,Electrical and Electronic Engineering ,0210 nano-technology ,business ,Photonic crystal - Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.