1. Deep Learning Prediction of Pathologic Complete Response in Breast Cancer Using MRI and Other Clinical Data: A Systematic Review
- Author
-
Nabeeha Khan, Richard Adam, Pauline Huang, Takouhie Maldjian, and Tim Q. Duong
- Subjects
neoadjuvant chemotherapy ,convolutional neural networks ,machine learning ,artificial intelligence ,molecular subtypes ,magnetic resonance imaging ,Computer applications to medicine. Medical informatics ,R858-859.7 - Abstract
Breast cancer patients who have pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) are more likely to have better clinical outcomes. The ability to predict which patient will respond to NAC early in the treatment course is important because it could help to minimize unnecessary toxic NAC and to modify regimens mid-treatment to achieve better efficacy. Machine learning (ML) is increasingly being used in radiology and medicine because it can identify relationships amongst complex data elements to inform outcomes without the need to specify such relationships a priori. One of the most popular deep learning methods that applies to medical images is the Convolutional Neural Networks (CNN). In contrast to supervised ML, deep learning CNN can operate on the whole images without requiring radiologists to manually contour the tumor on images. Although there have been many review papers on supervised ML prediction of pCR, review papers on deep learning prediction of pCR are sparse. Deep learning CNN could also incorporate multiple image types, clinical data such as demographics and molecular subtypes, as well as data from multiple treatment time points to predict pCR. The goal of this study is to perform a systematic review of deep learning methods that use whole-breast MRI images without annotation or tumor segmentation to predict pCR in breast cancer.
- Published
- 2022
- Full Text
- View/download PDF