1. Genetic mutations in Cryptococcus neoformans pyrimidine salvage pathway enzymes contribute to reduced susceptibility against 5-fluorocytosine
- Author
-
Fatima Zohra Delma, Dong-Hoon Yang, Alfredo Cabrera-Orefice, Jordy Coolen, Abdullah M. S. Al-Hatmi, Sarah A. Ahmed, Willem J. G. Melchers, Yun C. Chang, Kyung J. Kwon-Chung, Sybren de Hoog, Paul E. Verweij, and Jochem B. Buil
- Subjects
Microbiology ,QR1-502 - Abstract
Abstract Cryptococcal meningitis is a high-mortality infection. Adding 5-fluorocytosine (5-FC) to its treatment improves outcomes, but resistance to 5-FC presents a significant challenge. We conducted whole-genome sequencing on seven C. neoformans isolates with varying 5-FC susceptibility, along with proteomic and in silico analyses. Our findings indicate that mutations in genes of the pyrimidine salvage pathway are responsible for 5-FC resistance. Specifically, we identified an E64G missense mutation in the FUR1 gene, a large deletion in the FCY1 gene, and a point mutation in FCY1 leading to a truncated protein. The proteomic data indicated that these mutations resulted in the absence or reduction of crucial enzymes in resistant isolates. Genetic transformations confirmed the association between these mutations and 5-FC resistance. Resistance to 5-FC can develop during treatment and is closely tied to mutations in key metabolic enzymes. Understanding in vivo resistance development is crucial for combating resistance and enhancing patient outcomes.
- Published
- 2024
- Full Text
- View/download PDF