1. Effect of Data-Processing Methods on Acceleration Summary Metrics of GNSS Devices in Elite Australian Football
- Author
-
Susanne Ellens, David L. Carey, Paul B. Gastin, and Matthew C. Varley
- Subjects
data processing ,smoothing ,filter ,GPS ,acceleration ,Chemical technology ,TP1-1185 - Abstract
This study aimed to measure the differences in commonly used summary acceleration metrics during elite Australian football games under three different data processing protocols (raw, custom-processed, manufacturer-processed). Estimates of distance, speed and acceleration were collected with a 10-Hz GNSS tracking technology device from fourteen matches of 38 elite Australian football players from one team. Raw and manufacturer-processed data were exported from respective proprietary software and two common summary acceleration metrics (number of efforts and distance within medium/high-intensity zone) were calculated for the three processing methods. To estimate the effect of the three different data processing methods on the summary metrics, linear mixed models were used. The main findings demonstrated that there were substantial differences between the three processing methods; the manufacturer-processed acceleration data had the lowest reported distance (up to 184 times lower) and efforts (up to 89 times lower), followed by the custom-processed distance (up to 3.3 times lower) and efforts (up to 4.3 times lower), where raw data had the highest reported distance and efforts. The results indicated that different processing methods changed the metric output and in turn alters the quantification of the demands of a sport (volume, intensity and frequency of the metrics). Coaches, practitioners and researchers need to understand that various processing methods alter the summary metrics of acceleration data. By being informed about how these metrics are affected by processing methods, they can better interpret the data available and effectively tailor their training programs to match the demands of competition.
- Published
- 2024
- Full Text
- View/download PDF