Patt, Antoine, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Université Bourgogne Franche-Comté, Jean-Marc Simon, Sylvain Picaud, Marcos Salazar, and STAR, ABES
In this PhD work, numerical simulation methods have been used in order to model clathrate hydrates at the molecular scale, in thermodynamic conditions typical of astrophysical contexts. The aim was to characterize the trapping abilities of those peculiar structures of water, by means of the tools used in adsorption studies. The results presented in the present thesis are focused on a couple of chemical species which are found to be abundant in our astrophysical vicinity and are quite similar: carbon monoxide, CO, and nitrogen, N2. Thus, the single-component clathrates of CO and N2, and the mixed hydrate CO-N2 have been studied, mainly using grand canonical Monte Carlo simulations. First, these clathrates have been examined as part of a bulk phase. A preferential encapsulation of CO molecules, with respect to N2 molecules, has been highlighted in the simulations, in agreement with recent experimental data and thermodynamic calculations. Secondly, the hydrate systems have been brought in contact with a gaseous interface in order to study the surface adsorption of CO and N2 molecules. Simulations with other forms of solid water, also found in astrophysical contexts, have been performed. All the considered surfaces have shown a greater molecular selectivity towards the trapping of CO molecules, compared to the one of hydrates' cages., Dans ce travail de thèse, des méthodes de simulations numériques ont été utilisées pour modéliser à l'échelle moléculaire des clathrates hydrates, dans des conditions thermodynamiques typiques des milieux astrophysiques. L'objectif était de caractériser, à l'aide des outils habituels du milieu de l'adsorption, les capacités de piégeage de ces structures particulières de l'eau. Les résultats présentés dans ce mémoire se concentrent sur un couple d'espèces chimiques, abondantes dans notre environnement astrophysique et relativement similaires : le monoxyde de carbone, CO, et le diazote, N2. Ainsi, les clathrates purs de CO et de N2, et l'hydrate mixte CO-N2 ont été étudiés, principalement à l'aide de simulations Monte-Carlo, dans l'ensemble grand canonique. En premier lieu, ces clathrates ont été examinés en les considérant au sein de cristaux infinis. Une encapsulation préférentielle des molécules de CO par rapport à celles de N2 a pu être mise en évidence dans les simulations, en accord avec des données expérimentales récentes et des calculs thermodynamiques. En second lieu, les systèmes d'hydrates ont été mis en contact avec une interface gazeuse pour étudier l'adsorption de CO et N2 en surface. Des simulations avec d'autres formes d'eau solide, aussi présentes dans les milieux astrophysiques, ont été menées. Toutes les surfaces considérées se sont avérées être encore plus sélectives dans le piégeage des molécules de CO que les cages constituant les clathrates.