11 results on '"Patrick Mazoyer"'
Search Results
2. Filtering-based Analysis Comparing the DFA with the CDFA for Wide Sense Stationary Processes.
- Author
-
Bastien Berthelot, éric Grivel, Pierrick Legrand, Jean-Marc André, Patrick Mazoyer, and Thierry Ferreira
- Published
- 2019
- Full Text
- View/download PDF
3. 2D Fourier Transform Based Analysis Comparing the DFA with the DMA.
- Author
-
Bastien Berthelot, éric Grivel, Pierrick Legrand, Marc Donias, Jean-Marc André, Patrick Mazoyer, and Thierry Ferreira
- Published
- 2019
- Full Text
- View/download PDF
4. Policy Capturing to Support Pilot Decision-Making
- Author
-
Alexandre Marois, Daniel Lafond, Amandine Audouy, Hugo Boronat, and Patrick Mazoyer
- Subjects
General Medicine - Abstract
Abstract: Single-pilot operations are cognitively challenging for pilots and could benefit from decision-support tools to mitigate risk-prone situations. The Cognitive Shadow is a prototype tool that employs policy capturing, a data-driven technique used to model decisions, to learn users’ judgement policies and alert decision discrepancies from one’s decision pattern. This proof-of-concept study investigates the potential of policy capturing to model pilots’ policies facing unstable approaches. Pilots were presented simulated cases and asked whether to continue descent or to go-around while the policy-capturing tool learned their decision pattern and provided feedback. Individual models reached mean predictive accuracy of ~ 89% while the group model reached 100%. These results speak to the potential of extracting pilots’ knowledge using policy capturing to create decision aids.
- Published
- 2023
- Full Text
- View/download PDF
5. Alternative ways to compare the detrended fluctuation analysis and its variants. Application to visual tunneling detection.
- Author
-
Bastien Berthelot, éric Grivel, Pierrick Legrand, Jean-Marc André, and Patrick Mazoyer
- Published
- 2021
- Full Text
- View/download PDF
6. Regularized Dfa To Study The Gaze Position Of An Airline Pilot
- Author
-
Pierrick Legrand, Eric Grivel, Jean-Marc André, Patrick Mazoyer, Bastien Berthelot, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Quality control and dynamic reliability (CQFD), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), THALES, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and THALES [France]
- Subjects
Hurst exponent ,Stationary process ,Logarithm ,Filter ,Hurst ,Interpretation ,020206 networking & telecommunications ,02 engineering and technology ,Function (mathematics) ,Residual ,Square (algebra) ,DFA ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Detrended fluctuation analysis ,Applied mathematics ,020201 artificial intelligence & image processing ,Time series ,Mathematics - Abstract
International audience; To estimate the Hurst exponent of a mono-fractal process, the detrended fluctuation analysis (DFA) is based on the estimation of the trend of the integrated process. The latter is subtracted from the integrated process. The power of the residual is then computed and corresponds to the square of the fluctuation function. Its logarithm is proportional to the Hurst exponent. In the last few years, a few variants of this method have been proposed and differ in the way of estimating the trend. Our contribution in this paper is threefold. First, we introduce a new variant of the DFA, based on a regularized least-square criterion to estimate the trend. Then, the influence of the regularization parameter on the fluctuation function is analyzed in two cases: when the process is wide sense stationary and when it is not. Finally, an application is presented in the field of aeronautics to characterize an attentional impairment: the visual tunneling.
- Published
- 2020
7. Alternative Ways to Compare the Detendred Fluctuation Analysis and its Variants. Application to Visual Tunneling Detection
- Author
-
Patrick Mazoyer, Pierrick Legrand, Bastien Berthelot, Jean-Marc André, Eric Grivel, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Quality control and dynamic reliability (CQFD), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Ecole Nationale Supérieure de Cognitique (ENSC), Institut Polytechnique de Bordeaux, COGNITIQUE, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Thales (France), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and THALES [France]
- Subjects
Computer science ,Tunneling ,Hurst ,02 engineering and technology ,Correlation function (astronomy) ,DMA ,Square (algebra) ,Convolution ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Artificial Intelligence ,Moving average ,0202 electrical engineering, electronic engineering, information engineering ,Electrical and Electronic Engineering ,Hurst exponent ,Applied Mathematics ,020206 networking & telecommunications ,Function (mathematics) ,DFA ,Computational Theory and Mathematics ,Signal Processing ,Detrended fluctuation analysis ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,Statistics, Probability and Uncertainty ,Algorithm ,Linear filter - Abstract
International audience; The detrended fluctuation analysis (DFA) and its variants such as the detrended moving average (DMA) are widely used to estimate the Hurst exponent. These methods are very popular as they do not require advanced skills in the field of signal processing and statistics while providing accurate results. As a consequence, a great deal of interest has been paid to compare them and to better understand their behaviors from a mathematical point of view. In this paper, our contribution is threefold. Firstly, we propose another variant avoiding the discontinuities between consecutive local trends of the DFA by a priori constraining them to be continuous. Secondly, we show that, in all these approaches, the square of the fluctuation function can be presented in a similar matrix form. When the process is wide-sense stationary (w.s.s.), the latter can be seen as the power of the output of a linear filtering whose frequency response depends on the given method. In the general case, an interpretation of the square of the fluctuation function is also given by expressing it as the convolution between the 2D-Fourier transform of two matrices, one whose elements correspond to the instantaneous correlation function of the signal and the other which depends on the detrending method. To end up, an illustration is provided in the field of avionics for the detection of the visual tunneling, a deleterious cognitive state.
- Published
- 2020
- Full Text
- View/download PDF
8. Self-Affinity of an Aircraft Pilot’s Gaze Direction as a Marker of Visual Tunneling
- Author
-
Sarah Egea, Bastien Berthelot, Patrick Mazoyer, Jean-Marc André, Pierrick Legrand, and Eric Grivel
- Subjects
Physics ,Self-affinity ,business.industry ,Computer vision ,Artificial intelligence ,business ,Gaze ,Quantum tunnelling - Published
- 2019
- Full Text
- View/download PDF
9. 2D Fourier Transform Based Analysis Comparing the DFA with the DMA
- Author
-
Pierrick Legrand, Thierry Ferreira, Marc Donias, Bastien Berthelot, Jean-Marc André, Eric Grivel, Patrick Mazoyer, Laboratoire de l'intégration, du matériau au système (IMS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Quality control and dynamic reliability (CQFD), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), COGNITIQUE, Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure de Cognitique (ENSC), Institut Polytechnique de Bordeaux, THALES, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and THALES [France]
- Subjects
Hurst exponent ,Signal processing ,020206 networking & telecommunications ,02 engineering and technology ,Function (mathematics) ,Weighting ,Matrix (mathematics) ,symbols.namesake ,Fourier transform ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Moving average ,0202 electrical engineering, electronic engineering, information engineering ,Detrended fluctuation analysis ,symbols ,020201 artificial intelligence & image processing ,Algorithm ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
Even if they can be outperformed by other methods, the detrended fluctuation analysis (DFA) and the detrended moving average (DMA) are widely used to estimate the Hurst exponent because they are based on basic notions of signal processing. For the last years, a great deal of interest has been paid to compare them and to better understand their behaviors from a mathematical point of view. In this paper, our contribution is the following: we first propose to express the square of the so-called fluctuation function as a 2D Fourier transform (2D-FT) of the product of two matrices. The first one is defined from the instantaneous correlations of the signal while the second, called the weighting matrix, is representative of each method. Therefore, the 2D-FT of the weighting matrix is analyzed in each case. In this study, differences between the DFA and the DMA are pointed out when the approaches are applied on non-stationary processes.
- Published
- 2019
10. Filtering-based Analysis Comparing the DFA with the CDFA for Wide Sense Stationary Processes
- Author
-
Jean-Marc André, Eric Grivel, Pierrick Legrand, Patrick Mazoyer, Thierry Ferreira, Bastien Berthelot, Laboratoire de l'intégration, du matériau au système (IMS), Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Quality control and dynamic reliability (CQFD), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), COGNITIQUE, Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université Sciences et Technologies - Bordeaux 1, Ecole Nationale Supérieure de Cognitique (ENSC), Institut Polytechnique de Bordeaux, THALES, Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS), and THALES [France]
- Subjects
Hurst exponent ,Stationary process ,Covariance function ,020206 networking & telecommunications ,02 engineering and technology ,Filter (signal processing) ,Function (mathematics) ,Correlation function (astronomy) ,Wavelet ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Detrended fluctuation analysis ,020201 artificial intelligence & image processing ,Algorithm ,Computer Science::Databases ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
The detrended fluctuation analysis (DFA) is widely used to estimate the Hurst exponent. Although it can be outperformed by wavelet based approaches, it remains popular because it does not require a strong expertise in signal processing. Recently, some studies were dedicated to its theoretical analysis and its limits. More particularly, some authors focused on the so-called fluctuation function by searching a relation with an estimation of the normalized covariance function under some assumptions. This paper is complementary to these works. We first show that the square of the fluctuation function can be expressed in a similar matrix form for the DFA and the variant we propose, called Continuous-DFA (CDFA), where the global trend is constrained to be continuous. Then, using the above representation for wide-sense-stationary processes, the statistical mean of the square of the fluctuation function can be expressed from the correlation function of the signal and consequently from its power spectral density, without any approximation. The differences between both methods can be highlighted. It also confirms that they can be seen as ad hocwavelet based techniques.
- Published
- 2019
11. A neural network elicited by parametric manipulation of the attention load
- Author
-
Pierre Fonlupt, Patrick Mazoyer, and Bruno Wicker
- Subjects
Adult ,Male ,Cerebellum ,Precuneus ,Superior parietal lobule ,Neuropsychological Tests ,Stimulus (physiology) ,Functional Laterality ,Temporal lobe ,Parietal Lobe ,Neural Pathways ,Reaction Time ,medicine ,Humans ,Attention ,Cerebral Cortex ,Brain Mapping ,Artificial neural network ,General Neuroscience ,Magnetic Resonance Imaging ,Temporal Lobe ,Frontal Lobe ,Functional imaging ,Dorsolateral prefrontal cortex ,medicine.anatomical_structure ,Cerebrovascular Circulation ,Female ,Cues ,Nerve Net ,Psychology ,Neuroscience ,Photic Stimulation ,Psychomotor Performance - Abstract
We used a parametric experimental design to identify the rCBF variations related to a continuous variation of the attention load. The experiment involved goal-directed visual tasks. The length of time during which the subject's attention was engaged toward the external stimulus was taken as the factor of interest. The neural network revealed areas that positively (left cerebellum, bilateral MT/V5 complex and superior parietal lobule, right inferior temporal lobe and dorsolateral prefrontal cortex) or negatively (precuneus, anterior cingulate and medial superior frontal cortex) correlate with the attention load. Results demonstrate that the activity of these areas varies continuously as a function of the variation in the attention load.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.