C. Adkins, B.O. Lee, N. Dupin, T. Ogata, Patrice E. A. Turchi, M.J. Welland, E. C. Corcoran, Anna Smith, L. Kjellqvist, E. Geiger, Stéphane Gossé, A. Quaini, R. Hania, Davide Costa, J.R. Kennedy, J.C. Dumas, Christine Guéneau, M. Bankhead, Theodore M. Besmann, Masaki Kurata, Markus H.A. Piro, Laboratoire de Modélisation, Thermodynamique et Thermochimie (LM2T), Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Département de Physico-Chimie (DPC), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Département de Physico-Chimie (DPC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Calcul Thermodynamique, Lövsjö 205, Overhörnäs, 894 93, University of Ontario Institute of Technology (UOIT), University of Western Ontario (UWO), Japan Atomic Energy Agency [Ibaraki] (JAEA), Royal Military College of Canada (RMCC), Royal Military College of Canada, Nuclear Research and Consultancy Group, Delft University of Technology (TU Delft), University of South Carolina [Columbia], Lawrence Livermore National Laboratory (LLNL), Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (IRESNE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Chalk River Laboratories, Atomic Energy of Canada Ltd., Central Research Institute of Electrical Power Industry, Korea Atomic Energy Research Institute [Daejeon, south Korea] (KAERI), Idaho National Laboratory (INL), National Nuclear Laboratory (Warrington), Organisation de Coopération et de Développement Economiques (OCDE), and Organisation de Coopération et de Développement Economiques = Organisation for Economic Co-operation and Development (OCDE)
The Thermodynamics of Advanced Fuels – International Database (TAF-ID) was developed using the Calphad method to provide a computational tool to perform thermodynamic calculations on nuclear fuel materials under normal and off-normal conditions. Different kinds of fuels are considered: oxide, metallic, carbide and nitride fuels. Many fission products are introduced as well as structural materials (e.g., zirconium, steel, concrete, SiC) and absorbers (e.g., B4C), in order to investigate the thermochemistry of irradiated fuels and to predict their chemical interaction with the surrounding materials. The approach to develop the database and the models implemented in the database are described. Examples of models for key chemical systems are presented. Finally, a few examples of application calculations on severe accidents with UO2 fuels, irradiated fuel chemistry of MOX and metallic fuels and metallic fuel/cladding interaction show how this tool can be used. To validate the database, the calculations are compared to the available experimental data. A good agreement is obtained which gives confidence in the maturity degree and quality of the TAF-ID database. The working version is only accessible to the participants of the TAF-ID project (Canada, France, Japan, the Netherlands, Republic of Korea, United Kingdom, USA). A public version is accessible by all the NEA countries. The current version contains models on the Am–Fe, Am–Np, Am-O-Pu, Am–U, Am–Zr, C–O–U-Pu, Cr–U, Np–U, Np–Zr, O–U–Zr, Re–U, Ru–U, Si–U, Ti–U, U-Pu-Zr, U–W systems. It is progressively extended with our published assessments. Information on how to join the project is available on the website: https://www.oecd-nea.org/science/taf-id/.