21 results on '"Patin, Rémi"'
Search Results
2. Can overlooking "invisible landscapes" bias habitat selection estimation and population distribution projections?
- Author
-
Dejeante, Romain, primary, Lemaire-Patin, Rémi, additional, and Chamaillé-Jammes, Simon, additional
- Published
- 2024
- Full Text
- View/download PDF
3. Zebra diel migrations reduce encounter risk with lions at night
- Author
-
Courbin, Nicolas, Loveridge, Andrew J., Fritz, Hervé, Macdonald, David W., Patin, Rémi, Valeix, Marion, and Chamaillé-Jammes, Simon
- Published
- 2019
4. Space Use and Leadership Modify Dilution Effects on Optimal Vigilance under Food-Safety Trade-Offs
- Author
-
Patin, Rémi, Fortin, Daniel, Sueur, Cédric, and Chamaillé-Jammes, Simon
- Published
- 2019
5. A multi‐population approach supports common patterns in marine growth and maturation decision in Atlantic salmon (Salmo salar L.) from Southern Europe
- Author
-
Tréhin, Cécile, primary, Rivot, Etienne, additional, Santanbien, Valentin, additional, Patin, Rémi, additional, Gregory, Stephen D., additional, Lamireau, Ludivine, additional, Marchand, Frédéric, additional, Beaumont, William R. C., additional, Scott, Luke J., additional, Hillman, Robert, additional, Besnard, Anne‐Laure, additional, Boisson, Pierre‐Yves, additional, Meslier, Lisa, additional, King, R. Andrew, additional, Stevens, Jamie R., additional, and Nevoux, Marie, additional
- Published
- 2023
- Full Text
- View/download PDF
6. A multi‐population approach supports common patterns in marine growth and maturation decision in Atlantic salmon (Salmo salar L.) from southern Europe.
- Author
-
Tréhin, Cécile, Rivot, Etienne, Santanbien, Valentin, Patin, Rémi, Gregory, Stephen D., Lamireau, Ludivine, Marchand, Frédéric, Beaumont, William R. C., Scott, Luke J., Hillman, Robert, Besnard, Anne‐Laure, Boisson, Pierre‐Yves, Meslier, Lisa, King, Andrew R., Stevens, Jamie R., and Nevoux, Marie
- Subjects
ATLANTIC salmon ,LIFE history theory ,AIDS to navigation ,SALMON ,MARITIME history ,SYNCHRONIC order - Abstract
This study provides a regional picture of long‐term changes in Atlantic salmon growth at the southern edge of their distribution, using a multi‐population approach spanning 49 years and five populations. We provide empirical evidence of salmon life history being influenced by a combination of common signals in the marine environment and population‐specific signals. We identified an abrupt decline in growth from 1976 and a more recent decline after 2005. As these declines have also been recorded in northern European populations, our study significantly expands a pattern of declining marine growth to include southern European populations, thereby revealing a large‐scale synchrony in marine growth patterns for almost five decades. Growth increments during their sea sojourn were characterized by distinct temporal dynamics. At a coarse temporal resolution, growth during the first winter at sea seemed to gradually improve over the study period. However, the analysis of finer seasonal growth patterns revealed ecological bottlenecks of salmon life histories at sea in time and space. Our study reinforces existing evidence of an impact of early marine growth on maturation decision, with small‐sized individuals at the end of the first summer at sea being more likely to delay maturation. However, each population was characterized by a specific probabilistic maturation reaction norm, and a local component of growth at sea in which some populations have better growth in some years might further amplify differences in maturation rate. Differences between populations were smaller than those between sexes, suggesting that the sex‐specific growth threshold for maturation is a well‐conserved evolutionary phenomenon in salmon. Finally, our results illustrate that although most of the gain in length occurs during the first summer at sea, the temporal variability in body length at return is buffered against the decrease in post‐smolt growth conditions. The intricate combination of growth over successive seasons, and its interplay with the maturation decision, could be regulating body length by maintaining diversity in early growth trajectories, life histories, and the composition of salmon populations. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Effects of early life mass mortality events on fish populations
- Author
-
Langangen, Øystein, primary, Ohlberger, Jan, additional, Stige, Leif Christian, additional, Patin, Rémi, additional, Buttay, Lucie, additional, Stenseth, Nils Christian, additional, Ono, Kotaro, additional, and Durant, Joël M., additional
- Published
- 2022
- Full Text
- View/download PDF
8. Effects of early life mass mortality events on fish populations.
- Author
-
Langangen, Øystein, Ohlberger, Jan, Stige, Leif Christian, Patin, Rémi, Buttay, Lucie, Stenseth, Nils Christian, Ono, Kotaro, and Durant, Joël M.
- Subjects
FISH kills ,FISH populations ,LIFE history theory ,EXTREME weather ,FISH meal ,POPULATION dynamics ,ANIMAL products - Abstract
Mass mortality events are ubiquitous in nature and can be caused by, for example, diseases, extreme weather and human perturbations such as contamination. Despite being prevalent and rising globally, how mass mortality in early life causes population‐level effects such as reduced total population biomass, is not fully explored. In particular for fish, mass mortality affecting early life may be dampened by compensatory density‐dependent processes. However, due to large variations in year‐class strength, potentially caused by density‐independent variability in survival, the impact at the population level may be high in certain years. We quantify population‐level impacts at two levels of mass mortality (50% and 99% additional mortality) during early life across 40 fish species using age‐structured population dynamics models. The findings from these species‐specific models are further supported by an analysis of detailed stock‐specific models for three of the species. We find that population impacts are highly variable between years and species. Short‐lived species that exhibit a low degree of compensatory density dependence and high interannual variation in survival experience the strongest impacts at the population level. These quantitative and general relationships allow predicting the range of potential impacts of mass mortality events on species based on their life history. This is critical considering that the frequency and severity of mass mortality events are increasing worldwide. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. Reconciling stock-assessment with MCMC - Optimizing the new ICES WGNAS Atlantic Salmon stock-assessment model
- Author
-
Patin, Rémi, Hernvann, Pierre-Yves, Nevoux, Marie, Olmos, Maxime, Rivot, Etienne, Écologie et santé des écosystèmes (ESE), AGROCAMPUS OUEST, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SDV]Life Sciences [q-bio] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
10. ICES. 2021. Working Group on North Atlantic Salmon ( WGNAS)
- Author
-
April, Julien, Bardarson, Hlynur, Ahlbeck-Bergendahl, Ida, Bolstad, Geir H., Breau, Cindy, Buoro, Mathieu, Camara, Karin, Chaput, Gerald, Cooper, Anne, Dauphin, Guillaume, Ensing, Dennis, Erkinaro, Jaakko, Fiske, Peder, Freese, Marko, Gillson, Jonathan, Gregory, Stephen, Hanson, Nora, Jepsen, Niels, Kelly, Nicholas, Kenyon, Wendy, Maxwell, Hugo, Meerburg, David, Millane, Michael, Nygaard, Rasmus, Ounsley, James, Patin, Rémi, Prusov, Sergey, Raab, Dustin, Rivot, Etienne, Robertson, Martha, Sheehan, Timothy, Tallman, Ross, Walker, Alan, Wennevik, Vidar, Ministere des Forets, de la Faune et des Parcs du Quebec, Quebec, QC, Canada, Marine and Freshwater Research Institute, Swedish University of Agricultural Sciences (SLU), Norwegian Institute for Nature Research (NINA), Fisheries and Oceans Canada (DFO), Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP), Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), pôle OFB-INRAE- Agrocampus Ouest-UPPA pour la gestion des migrateurs amphihalins dans leur environnement, AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Office français de la biodiversité (OFB), LANUV NRW KIRCHHUNDEM ALBAUM DEU, Partenaires IRSTEA, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), International Council for the Exploration of the Sea, Partenaires INRAE, Agri Food & Biosciences Institute - AFBI, Natural Resources Institute Finland (LUKE), Thünen Institute, Centre for Environment, Fisheries and Aquaculture Science [Lowestoft] (CEFAS), Salmon and Trout Research Centre, Game and Wildlife Conservation Trust, The Game and Wildlife Conservation Trust, Marine Scotland, DTU Aqua, National Institute of Aquatic Resources, Technical University of Denmark [Lyngby] (DTU), North Atlantic Salmon Conservation Organization, Marine Institute [Ireland], Atlantic Salmon Federation, Inland Fisheries Ireland, Greenland Institute for Natural Resources (GINR), Écologie et santé des écosystèmes (ESE), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Russian Federal Research Institute of Fisheries and Oceanography, NOAA National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Institute of Marine Research [Bergen] (IMR), and University of Bergen (UiB)
- Subjects
[SDE.MCG]Environmental Sciences/Global Changes ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
- Full Text
- View/download PDF
11. Drivers of Interspecific Spatial Segregation in Two Closely‐Related Seabird Species at a Pan‐Atlantic Scale.
- Author
-
Bonnet‐Lebrun, Anne‐Sophie, Matthiopoulos, Jason, Lemaire‐Patin, Rémi, Deville, Tanguy, Barrett, Robert, Bogdanova, Maria I., Bolton, Mark, Christensen‐Dalsgaard, Signe, Daunt, Francis, Dehnhard, Nina, Descamps, Sébastien, Elliott, Kyle, Erikstad, Kjell Einar, Frederiksen, Morten, Gilchrist, Grant, Harris, Mike, Kolbeinsson, Yann, Linnebjerg, Jannie Fries, Lorentsen, Svein‐Håkon, and Mallory, Mark
- Subjects
- *
HABITAT selection , *SYMPATRIC speciation , *SPECIES , *HABITATS , *HYPOTHESIS , *COMPETITION (Biology) - Abstract
ABSTRACT Aim Location Taxa Methods Results Main Conclusions Ecologically similar species living in sympatry are expected to segregate to reduce the effects of competition where resources are limiting. Segregation from heterospecifics commonly occurs in space, but it is often unknown whether such segregation has underlying environmental causes. Indeed, species could segregate because of different fundamental environmental requirements (i.e., ‘niche divergence’), because competitive exclusion at sympatric sites can force species to either change the habitat use they would have at allopatric sites (i.e., ‘niche displacement’) or to avoid certain areas, independently of habitat (i.e., ‘spatial avoidance’). Testing these hypotheses requires the comparison between sympatric and allopatric sites. Understanding the competitive mechanisms that underlie patterns of spatial segregation could improve predictions of species responses to environmental change, as competition might exacerbate the effects of environmental change.North Atlantic and Arctic.Common guillemots Uria aalge and Brünnich's guillemots Uria lomvia.Here, we examine support for these explanations for spatial segregation in two closely‐related seabird species, common guillemots (Uria aalge) and Brünnich's guillemots (U. lomvia). For this, we collated a pan‐Atlantic data set of breeding season foraging tracks from 1046 individuals, collected from 20 colonies (8 sympatric and 12 allopatric). These were analysed with habitat models in a spatially transferable framework to compare habitat preferences between species at sympatric and allopatric sites.We found no effect of the distribution of heterospecifics on local habitat preferences of the focal species. We found differences in habitat preferences between species, but these were not sufficient to explain the observed levels of spatial segregation at sympatric sites.Assuming we did not omit any relevant environmental variables, these results suggest a mix of niche divergence and spatial avoidance produces the observed patterns of spatial segregation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
12. A theory of the use of information by enemies in the predator-prey space race
- Author
-
Patin, Rémi, primary, Fortin, Daniel, additional, and Chamaillé-Jammes, Simon, additional
- Published
- 2020
- Full Text
- View/download PDF
13. Spatial race and behavioural interactions in the predator-prey game
- Author
-
Patin, Rémi, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Université Montpellier, Simon Chamaillé-Jammes, Daniel Fortin, Université Paul-Valéry - Montpellier 3 (UM3)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-École pratique des hautes études (EPHE)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud])
- Subjects
Paysage de la peur ,Jeu de passe passe ,Landscape of fear ,Shell game ,Interactions proie-Prédateur ,Comportement anti-Prédateur ,Anti-Predator behaviour ,Vigilance ,Predator-Prey interactions ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,Spatial strategy ,Stratégie spatiale - Abstract
Predators and prey engage into a space race where predators seek to select areas with high prey availability while prey try to avoid areas with a high probability of encountering a predator. Predators and prey continuously make choices that can alter the outcome of this space race. For example, by using different locations in the landscape, they can alter the probability of an encounter, the probabilities of detection or the probability of success of an attack. Many empirical studies show the importance of habitat in these choices. On the other hand, little is known about avoidance by prey or predator search strategies that would be unrelated to habitat. The space race, however, does not fully summarize the interaction between predators and prey, which also depends on many non-spatial behaviors. The vigilance and grouping behaviour of prey are relatively common defenses, and there are many examples where prey become active at another time of day to escape their predator. However, it is still unclear how those behaviors interact with the spatial dimension of the prey-predator game. In this thesis, I will try to fill these gaps. In the first chapter, I propose a theoretical model showing the importance of accounting for spatial behaviors when studying the classical interaction between vigilance and group size in prey. In the second chapter, I present a mechanism of predator avoidance by prey, relying on the spatial and temporal anchors of predators and independent on the habitat. Finally, in the last chapter, I develop a patch selection model to predict how past information should be used to determine movement. This model emphasize the importance of movement unpredictability in the predator-prey game. These different works are part of a behavioral ecology of the landscape and aim to integrate behavioral mechanisms in the study of ecological dynamics at the landscape scale.; Prédateurs et proies sont entraînés dans une course spatiale où les prédateurs cherchent à sélectionner les zones du paysage avec une forte disponibilité en proies alors que les proies tentent d’éviter les zones du paysage avec une forte probabilité de rencontrer un prédateur. Ils procèdent incessamment à de nombreux choix susceptibles de modifier l’issue de cette course. Ainsi, en sélectionnant des endroits différents, ils peuvent tenter d'altérer les probabilités de détection, de rencontre ou encore la probabilité de réussite d’une attaque. De nombreuses études empiriques montrent l’importance de l’habitat dans ces choix. On connaît par contre peu les mécanismes de recherche (par les prédateurs) ou d’évitement (par les proies) qui ne seraient pas relatifs à l’habitat. La course spatiale ne résume cependant pas entièrement l’interaction entre prédateurs et proies, laquelle dépend de nombreux comportements non-spatiaux. La vigilance et la socialité des proies constituent des défenses relativement répandues. On a aussi fréquemment observé de nombreux exemples où les proies deviennent actives à un autre moment de la journée pour échapper à leur prédateur. Cependant, on connaît relativement peu les interactions de ces comportements avec la dimension spatiale du jeu proie-prédateur. Dans cette thèse, j'ai pour objectif de combler ces différents manques. Dans le premier chapitre, je propose un modèle théorique montrant l’importance de la prise en compte des comportements spatiaux dans l’interaction classique entre vigilance et taille de groupe chez les proies. Dans le second chapitre, je présente un mécanisme d’évitement des prédateurs par les proies, s'appuyant sur les ancres spatiales et temporelles des prédateurs et ne dépendant pas de l’habitat. Enfin, dans le dernier chapitre, je développe un modèle de choix de parcelles permettant de prévoir comment les connaissances passées sont susceptibles d'être utilisées pour orienter les déplacements. Ce modèle rappelle notamment l’importance de l’imprévisibilité du déplacement dans le jeu prédateur-proie. Ces différents travaux se placent dans le cadre d’une écologie comportementale du paysage et visent à intégrer des mécanismes comportementaux dans l’étude des dynamiques écologiques à l’échelle du paysage.
- Published
- 2018
14. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements
- Author
-
Patin, Rémi, primary, Etienne, Marie‐Pierre, additional, Lebarbier, Emilie, additional, Chamaillé‐Jammes, Simon, additional, and Benhamou, Simon, additional
- Published
- 2019
- Full Text
- View/download PDF
15. Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape
- Author
-
Ducros, Delphine, primary, Morellet, Nicolas, additional, Patin, Rémi, additional, Atmeh, Kamal, additional, Debeffe, Lucie, additional, Cargnelutti, Bruno, additional, Chaval, Yannick, additional, Lourtet, Bruno, additional, Coulon, Aurélie, additional, and Hewison, A. J. Mark, additional
- Published
- 2019
- Full Text
- View/download PDF
16. Zebra diel migrations reduce encounter risk with lions at night
- Author
-
Courbin, Nicolas, primary, Loveridge, Andrew J., additional, Fritz, Hervé, additional, Macdonald, David W., additional, Patin, Rémi, additional, Valeix, Marion, additional, and Chamaillé‐Jammes, Simon, additional
- Published
- 2018
- Full Text
- View/download PDF
17. Identifying stationary phases in multivariate time-series for highlighting behavioural modes and home range settlements
- Author
-
Patin, Rémi, primary, Étienne, Marie-Pierre, additional, Lebarbier, Émilie, additional, Chamaillé-Jammes, Simon, additional, and Benhamou, Simon, additional
- Published
- 2018
- Full Text
- View/download PDF
18. Zebra diel migrations reduce encounter risk with lions over selection for safe habitats
- Author
-
Courbin, Nicolas, primary, Loveridge, Andrew J., additional, Fritz, Hervé, additional, Macdonald, David W., additional, Patin, Rémi, additional, Valeix, Marion, additional, and Chamaillé-Jammes, Simon, additional
- Published
- 2017
- Full Text
- View/download PDF
19. Identifying stationary phases in multivariate time series for highlighting behavioural modes and home range settlements.
- Author
-
Patin, Rémi, Etienne, Marie‐Pierre, Lebarbier, Emilie, Chamaillé‐Jammes, Simon, Benhamou, Simon, and Street, Garrett
- Subjects
- *
TIME series analysis , *HIDDEN Markov models , *LOCAL transit access , *ANIMAL mechanics , *BIVARIATE analysis , *PUBLIC transit ridership , *DATA logging - Abstract
Recent advances in biologging open promising perspectives in the study of animal movements at numerous scales. It is now possible to record time series of animal locations and ancillary data (e.g. activity level derived from on‐board accelerometers) over extended areas and long durations with a high spatial and temporal resolution. Such time series are often piecewise stationary, as the animal may alternate between different stationary phases (i.e. characterized by a specific mean and variance of some key parameter for limited periods). Identifying when these phases start and end is a critical first step to understand the dynamics of the underlying movement processes.We introduce a new segmentation‐clustering method we called segclust2d (available as a r package at cran.r-project.org/package=segclust2d). It can segment bivariate (or more generally multivariate) time series and possibly cluster the various segments obtained, corresponding to different phases assumed to be stationary. This method is easy to use, as it only requires specifying a minimum segment length (to prevent over‐segmentation), based on biological rather than statistical considerations.This method can be applied to bivariate piecewise time series of any nature. We focus here on two types of time series related to animal movement, corresponding to (a) at large scale, series of bivariate coordinates of relocations, to highlight temporary home ranges, and (b) at smaller scale, bivariate series derived from relocations data, such as speed and turning angle, to highlight different behavioural modes such as transit, feeding and resting.Using computer simulations, we show that segclust2d can rival and even outperform previous, more complex methods, which were specifically developed to highlight changes of movement modes or home range shifts (based on hidden Markov and Ornstein–Uhlenbeck modelling), which, contrary to our method, usually require the user to provide relevant initial guesses to be efficient. Furthermore, we demonstrate it on actual examples involving a zebra's small‐scale movements and an elephant's large‐scale movements, to illustrate how various movement modes and home range shifts, respectively, can be identified. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
20. Beyond dispersal versus philopatry? Alternative behavioural tactics of juvenile roe deer in a heterogeneous landscape.
- Author
-
Ducros, Delphine, Morellet, Nicolas, Patin, Rémi, Atmeh, Kamal, Debeffe, Lucie, Cargnelutti, Bruno, Chaval, Yannick, Lourtet, Bruno, Coulon, Aurélie, and Hewison, A. J. Mark
- Subjects
ROE deer ,POPULATION dynamics ,DECISION trees ,DEER - Abstract
Although inter‐individual heterogeneity in many aspects of dispersal behaviour is widely reported, this key life‐history trait is predominantly modelled as a dichotomous state of philopatry versus dispersal. The increasing body of evidence for dispersal syndromes (i.e. a suite of correlated morphological, behavioural and life‐history traits associated with dispersal) implies substantial but, to date, undocumented individual heterogeneity in behavioural tactics during dispersal. Using a large sample (n = 154) of GPS monitored juvenile roe deer Capreolus capreolus, we evaluated among‐individual behavioural heterogeneity in dispersal tactics, and the individual and environmental drivers of these alternative tactics. We developed a sequential three‐stage decision tree based on space use stability, exploration events and the directionality of movement. We identified six discrete alternative behavioural tactics during the dispersal period which were characterised by different timing, amplitude and duration in movement: slightly less than half of the deer were sedentary, either 'strictly philopatric' or 'explorers', which subsequently settled on their natal range; around 40% dispersed ('classic dispersal'), of which, one in six subsequently aborted, moving back to their natal range ('aborted dispersal'); finally, around 15% expressed either a 'progressive dispersal' tactic, gradually moving away from their natal area to settle elsewhere, or a 'multi‐range' tactic. The propensity to express an alternative dispersal tactic was strongly influenced by an individual's local environment. In particular, when landscape heterogeneity, resource quality and human‐related disturbance in the natal range were low, individuals were 1) more likely to adopt the alternative tactics of either progressive dispersal or multi‐ranging, but 2) also more likely to abort their dispersal attempt. Our work indicates that natal dispersal is likely not a single uniform behaviour, but that individuals may adopt a variety of alternative movement tactics which are likely governed by different selection pressures, with potentially important impacts for population dynamics and functioning. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
21. Using a state-space population model to detect age-dependent species interactions
- Author
-
Patin, Rémi, primary, Rogers, Lauren A., additional, and Ohlberger, Jan, additional
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.