1. Effects of inlet boundary conditions on blood flow and thrombosis modelling in patients with chronic thromboembolic pulmonary hypertension.
- Author
-
Wu, Hui, Xi, Linfeng, Hao, Yueming, Liu, Min, Huang, Qiang, Ma, Tianxiang, Deng, Xiaoyan, Zhai, Zhenguo, and Liu, Xiao
- Abstract
AbstractTo investigate the impact of patient-specific boundary conditions (BC) on blood flow and thrombosis modelling for patients with chronic thromboembolic pulmonary hypertension (CTEPH), three types of BCs were utilized to construct CTEPH models based on computed tomography pulmonary angiography images. First BC type is the patient-specific velocity profiles at the main pulmonary artery using phase contrast MRI (PC-MRI). The other two simplified types are the pulsatile BC and steady BC, which are obtained by spatially and temporally averaging the PC-MRI BC. Hemodynamic features including helical density, time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI), and thrombosis were compared for the three types BCs. The results indicated that, compared to the MRI BC, steady BC overestimated helical density and TAWSS in the pulmonary arteries by approximately 63.1% and 60%, respectively. The impact of simplified pulsatile BC on TAWSS and OSI in most regions of the pulmonary arteries was negligible with differences within 5%. Regarding thrombosis, the area predicted under pulsatile BC was approximately 80% smaller than that under PC-MRI BC. In conclusion, compared to PC-MRI BC, steady inlet BC tend to overestimate hemodynamic parameters, while pulsatile inlet BC yield similar wall shear stress based on parameters in most regions of the pulmonary artery. Patient-specific PC-MRI inlet BC should be used for accurate predictions of helical flow pattern and thrombus formation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF