7 results on '"Parobczak K"'
Search Results
2. Neuronal activation affects the organization and protein composition of the nuclear speckles.
- Author
-
Szczepankiewicz AA, Parobczak K, Zaręba-Kozioł M, Ruszczycki B, Bijata M, Trzaskoma P, Hajnowski G, Holm-Kaczmarek D, Włodarczyk J, Sas-Nowosielska H, Wilczyński GM, Rędowicz MJ, and Magalska A
- Subjects
- Animals, Rats, Nuclear Proteins metabolism, Nuclear Proteins genetics, Male, Transcription, Genetic, Cells, Cultured, Neurons metabolism, Cell Nucleus metabolism, Hippocampus metabolism
- Abstract
Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies. Notably, the impact of neuronal activation on IGC/nuclear speckles organization and function remains unexplored. To address this research gap, we examined whether and how neuronal stimulation affects the organization of these bodies in granular neurons from the rat hippocampal formation. Our findings demonstrate that neuronal stimulation induces morphological and proteomic remodelling of the nuclear speckles under both in vitro and in vivo conditions. Importantly, these changes are not associated with cellular stress or cell death but are dependent on transcription and splicing., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Dynamic Arc SUMOylation and Selective Interaction with F-Actin-Binding Protein Drebrin A in LTP Consolidation In Vivo .
- Author
-
Nair RR, Patil S, Tiron A, Kanhema T, Panja D, Schiro L, Parobczak K, Wilczynski G, and Bramham CR
- Abstract
Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation. The covalent addition of a single SUMO1 protein was confirmed by in vitro SUMOylation of immunoprecipitated Arc. To explore regulation of endogenous Arc during synaptic plasticity, we induced long-term potentiation (LTP) in the dentate gyrus of live anesthetized rats. Using coimmunoprecipitation of native proteins, we show that Arc synthesized during the maintenance phase of LTP undergoes dynamic mono-SUMO1-ylation. Levels of unmodified Arc increase in multiple subcellular fractions (cytosol, membrane, nuclear and cytoskeletal), whereas enhanced Arc SUMOylation was specific to the synaptoneurosomal and the cytoskeletal fractions. Dentate gyrus LTP consolidation requires a period of sustained Arc synthesis driven by brain-derived neurotrophic factor (BDNF) signaling. Local infusion of the BDNF scavenger, TrkB-Fc, during LTP maintenance resulted in rapid reversion of LTP, inhibition of Arc synthesis and loss of enhanced Arc SUMO1ylation. Furthermore, coimmunoprecipitation analysis showed that SUMO1-ylated Arc forms a complex with the F-actin-binding protein drebrin A, a major regulator of cytoskeletal dynamics in dendritic spines. Although Arc also interacted with dynamin 2, calcium/calmodulindependentprotein kinase II-beta (CaMKIIβ), and postsynaptic density protein-95 (PSD-95), these complexes lacked SUMOylated Arc. The results support a model in which newly synthesized Arc is SUMOylated and targeted for actin cytoskeletal regulation during in vivo LTP.
- Published
- 2017
- Full Text
- View/download PDF
4. Localization and regulation of PML bodies in the adult mouse brain.
- Author
-
Hall MH, Magalska A, Malinowska M, Ruszczycki B, Czaban I, Patel S, Ambrożek-Latecka M, Zołocińska E, Broszkiewicz H, Parobczak K, Nair RR, Rylski M, Pawlak R, Bramham CR, and Wilczyński GM
- Subjects
- Animals, Cerebral Cortex metabolism, Intranuclear Inclusion Bodies metabolism, Male, Mice, Mice, Inbred C57BL, SUMO-1 Protein metabolism, Seizures metabolism, Stress, Psychological metabolism, Brain metabolism, Neurons metabolism, Promyelocytic Leukemia Protein metabolism
- Abstract
PML is a tumor suppressor protein involved in the pathogenesis of promyelocytic leukemia. In non-neuronal cells, PML is a principal component of characteristic nuclear bodies. In the brain, PML has been implicated in the control of embryonic neurogenesis, and in certain physiological and pathological phenomena in the adult brain. Yet, the cellular and subcellular localization of the PML protein in the brain, including its presence in the nuclear bodies, has not been investigated comprehensively. Because the formation of PML bodies appears to be a key aspect in the function of the PML protein, we investigated the presence of these structures and their anatomical distribution, throughout the adult mouse brain. We found that PML is broadly expressed across the gray matter, with the highest levels in the cerebral and cerebellar cortices. In the cerebral cortex PML is present exclusively in neurons, in which it forms well-defined nuclear inclusions containing SUMO-1, SUMO 2/3, but not Daxx. At the ultrastructural level, the appearance of neuronal PML bodies differs from the classic one, i.e., the solitary structure with more or less distinctive capsule. Rather, neuronal PML bodies have the form of small PML protein aggregates located in the close vicinity of chromatin threads. The number, size, and signal intensity of neuronal PML bodies are dynamically influenced by immobilization stress and seizures. Our study indicates that PML bodies are broadly involved in activity-dependent nuclear phenomena in adult neurons.
- Published
- 2016
- Full Text
- View/download PDF
5. Tuberous sclerosis complex neuropathology requires glutamate-cysteine ligase.
- Author
-
Malik AR, Liszewska E, Skalecka A, Urbanska M, Iyer AM, Swiech LJ, Perycz M, Parobczak K, Pietruszka P, Zarebska MM, Macias M, Kotulska K, Borkowska J, Grajkowska W, Tyburczy ME, Jozwiak S, Kwiatkowski DJ, Aronica E, and Jaworski J
- Subjects
- Adolescent, Animals, Buthionine Sulfoximine pharmacology, COS Cells, Cell Proliferation drug effects, Cell Proliferation genetics, Child, Chlorocebus aethiops, Enzyme Inhibitors pharmacology, Female, Green Fluorescent Proteins genetics, Green Fluorescent Proteins metabolism, Humans, Immunosuppressive Agents pharmacology, Male, RNA, Small Interfering genetics, RNA, Small Interfering metabolism, RNA, Small Interfering pharmacology, Sirolimus pharmacology, TOR Serine-Threonine Kinases metabolism, Tuberous Sclerosis Complex 1 Protein, Tuberous Sclerosis Complex 2 Protein, Tumor Suppressor Proteins genetics, Tumor Suppressor Proteins metabolism, Young Adult, Brain pathology, Glutamate-Cysteine Ligase metabolism, Neurons metabolism, Tuberous Sclerosis pathology
- Abstract
Introduction: Tuberous sclerosis complex (TSC) is a genetic disease resulting from mutation in TSC1 or TSC2 and subsequent hyperactivation of mammalian Target of Rapamycin (mTOR). Common TSC features include brain lesions, such as cortical tubers and subependymal giant cell astrocytomas (SEGAs). However, the current treatment with mTOR inhibitors has critical limitations. We aimed to identify new targets for TSC pharmacotherapy., Results: The results of our shRNA screen point to glutamate-cysteine ligase catalytic subunit (GCLC), a key enzyme in glutathione synthesis, as a contributor to TSC-related phenotype. GCLC inhibition increased cellular stress and reduced mTOR hyperactivity in TSC2-depleted neurons and SEGA-derived cells. Moreover, patients' brain tubers showed elevated GCLC and stress markers expression. Finally, GCLC inhibition led to growth arrest and death of SEGA-derived cells., Conclusions: We describe GCLC as a part of redox adaptation in TSC, needed for overgrowth and survival of mutant cells, and provide a potential novel target for SEGA treatment.
- Published
- 2015
- Full Text
- View/download PDF
6. Biodistribution and Efficacy Studies of the Proteasome Inhibitor BSc2118 in a Mouse Melanoma Model.
- Author
-
Mlynarczuk-Bialy I, Doeppner TR, Golab J, Nowis D, Wilczynski GM, Parobczak K, Wigand ME, Hajdamowicz M, Biały LP, Aniolek O, Henklein P, Bähr M, Schmidt B, Kuckelkorn U, and Kloetzel PM
- Abstract
Inhibition of the proteasome offers many therapeutic possibilities in inflammation as well as in neoplastic diseases. However, clinical use of proteasome inhibitors is limited by the development of resistance or severe side effects. In our study we characterized the anti-tumor properties of the novel proteasome inhibitor BSc2118. The sensitivity of tumor lines to BSc2118 was analyzed in comparison to bortezomib using crystal violet staining in order to assess cell viability. The In Vivo distribution of BSc2118 in mouse tissues was tracked by a fluorescent-modified form of BSc2118 (BSc2118-FL) and visualized by confocal microscopy. Inhibition of the 20S proteasome was monitored both in cultured cell lines and in mice, respectively. Finally, safety and efficacy of BSc2118 was evaluated in a mouse melanoma model. BSc2118 inhibits proliferation of different tumor cell lines with a similar potency as compared with bortezomib. Systemic administration of BSc2118 in mice is well tolerated, even when given in a dose of 60 mg/kg body weight. After systemic injection of BSc2118 or bortezomib similar proteasome inhibition patterns are observed within the murine organs. Detection of BSc2118-FL revealed correlation of distribution pattern of BSc2118 with inhibition of proteasomal activity in cells or mouse tissues. Finally, administration of BSc2118 in a mouse melanoma model shows significant local anti-tumor effects. Concluding, BSc2118 represents a novel low-toxic agent that might be alternatively used for known proteasome inhibitors in anti-cancer treatment.
- Published
- 2014
- Full Text
- View/download PDF
7. Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons.
- Author
-
Perycz M, Urbanska AS, Krawczyk PS, Parobczak K, and Jaworski J
- Subjects
- Actins genetics, Actins metabolism, Animals, Biological Transport genetics, COS Cells, Cells, Cultured, Chlorocebus aethiops, Dendrites metabolism, Embryo, Mammalian, Gene Expression Regulation genetics, Green Fluorescent Proteins genetics, Mutation genetics, Neurons ultrastructure, Phosphorylation, RNA, Messenger metabolism, RNA, Small Interfering genetics, RNA, Small Interfering metabolism, RNA-Binding Proteins genetics, Rats, Rats, Wistar, Ribonucleoproteins genetics, Ribonucleoproteins metabolism, Statistics, Nonparametric, Time Factors, Transfection, Tyrosine genetics, Tyrosine metabolism, Dendrites physiology, Hippocampus cytology, Neurons cytology, RNA-Binding Proteins metabolism
- Abstract
The pattern of dendritic branching, together with the density of synapses and receptor composition, defines the electrical properties of a neuron. The development of the dendritic arbor and its additional stabilization are highly orchestrated at the molecular level and are guided by intrinsic mechanisms and extracellular information. Although protein translation is known to contribute to these processes, the role of its local component has not been fully explored. For local translation, mRNAs are transported to dendrites in their dormant form as ribonucleoparticles (RNPs). We hypothesized that disturbing spatial mRNA distribution via RNP targeting may result in severe underdevelopment of the dendritic arbor. Zipcode binding protein 1 (ZBP1) controls β-actin mRNA transport and translation in dendrites. We showed that proper cellular levels of ZBP1, its ability to engage in mRNA binding, and Src-dependent release of mRNA cargo from ZBP1 are vital for dendritic arbor development in cultured rat hippocampal neurons. Moreover, β-actin overexpression significantly alleviated the effects of ZBP1 knockdown. These results suggest that ZBP1-dependent dendritic mRNA transport contributes to proper dendritic branching.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.