1. Pre-Pruning and Gradient-Dropping Improve Differentially Private Image Classification
- Author
-
Adamczewski, Kamil, He, Yingchen, and Park, Mijung
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
Scalability is a significant challenge when it comes to applying differential privacy to training deep neural networks. The commonly used DP-SGD algorithm struggles to maintain a high level of privacy protection while achieving high accuracy on even moderately sized models. To tackle this challenge, we take advantage of the fact that neural networks are overparameterized, which allows us to improve neural network training with differential privacy. Specifically, we introduce a new training paradigm that uses \textit{pre-pruning} and \textit{gradient-dropping} to reduce the parameter space and improve scalability. The process starts with pre-pruning the parameters of the original network to obtain a smaller model that is then trained with DP-SGD. During training, less important gradients are dropped, and only selected gradients are updated. Our training paradigm introduces a tension between the rates of pre-pruning and gradient-dropping, privacy loss, and classification accuracy. Too much pre-pruning and gradient-dropping reduces the model's capacity and worsens accuracy, while training a smaller model requires less privacy budget for achieving good accuracy. We evaluate the interplay between these factors and demonstrate the effectiveness of our training paradigm for both training from scratch and fine-tuning pre-trained networks on several benchmark image classification datasets. The tools can also be readily incorporated into existing training paradigms., Comment: arXiv admin note: text overlap with arXiv:2303.04612
- Published
- 2023