88 results on '"Parisot, N"'
Search Results
2. Evolutionary diversification of insulin-related peptides (IRPs) in aphids and spatiotemporal distribution in Acyrthosiphon pisum
- Author
-
Huygens, C., primary, Ribeiro Lopes, M., additional, Gaget, K., additional, Duport, G., additional, Peignier, S., additional, De Groef, S., additional, Parisot, N., additional, Calevro, F., additional, and Callaerts, P., additional
- Published
- 2022
- Full Text
- View/download PDF
3. The transposable element-rich genome of the cereal pest Sitophilus oryzae
- Author
-
Parisot, N, Vargas-Chavez, C, Goubert, C, Baa-Puyoulet, P, Balmand, S, Beranger, L, Blanc, C, Bonnamour, A, Boulesteix, M, Burlet, N, Calevro, F, Callaerts, P, Chancy, T, Charles, H, Colella, S, Barbosa, ADS, Dell'Aglio, E, Di Genova, A, Febvay, G, Gabaldon, T, Ferrarini, MG, Gerber, A, Gillet, B, Hubley, R, Hughes, S, Jacquin-Joly, E, Maire, J, Marcet-Houben, M, Masson, F, Meslin, C, Montagne, N, Moya, A, Ribeiro de Vasconcelos, AT, Richard, G, Rosen, J, Sagot, M-F, Smit, AFA, Storer, JM, Vincent-Monegat, C, Vallier, A, Vigneron, A, Zaidman-Remy, A, Zamoum, W, Vieira, C, Rebollo, R, Latorre, A, Heddi, A, Parisot, N, Vargas-Chavez, C, Goubert, C, Baa-Puyoulet, P, Balmand, S, Beranger, L, Blanc, C, Bonnamour, A, Boulesteix, M, Burlet, N, Calevro, F, Callaerts, P, Chancy, T, Charles, H, Colella, S, Barbosa, ADS, Dell'Aglio, E, Di Genova, A, Febvay, G, Gabaldon, T, Ferrarini, MG, Gerber, A, Gillet, B, Hubley, R, Hughes, S, Jacquin-Joly, E, Maire, J, Marcet-Houben, M, Masson, F, Meslin, C, Montagne, N, Moya, A, Ribeiro de Vasconcelos, AT, Richard, G, Rosen, J, Sagot, M-F, Smit, AFA, Storer, JM, Vincent-Monegat, C, Vallier, A, Vigneron, A, Zaidman-Remy, A, Zamoum, W, Vieira, C, Rebollo, R, Latorre, A, and Heddi, A
- Abstract
BACKGROUND: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
- Published
- 2021
4. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest
- Author
-
Rispe, C, Legeai, F, Nabity, PD, Fernandez, R, Arora, AK, Baa-Puyoulet, P, Banfill, CR, Bao, L, Barbera, M, Bouallegue, M, Bretaudeau, A, Brisson, JA, Calevro, F, Capy, P, Catrice, O, Chertemps, T, Couture, C, Deliere, L, Douglas, AE, Dufault-Thompson, K, Escuer, P, Feng, H, Forneck, A, Gabaldon, T, Guigo, R, Hilliou, F, Hinojosa-Alvarez, S, Hsiao, Y-M, Hudaverdian, S, Jacquin-Joly, E, James, EB, Johnston, S, Joubard, B, Le Goff, G, Le Trionnaire, G, Librado, P, Liu, S, Lombaert, E, Lu, H-L, Maibeche, M, Makni, M, Marcet-Houben, M, Martinez-Torres, D, Meslin, C, Montagne, N, Moran, NA, Papura, D, Parisot, N, Rahbe, Y, Lopes, MR, Ripoll-Cladellas, A, Robin, S, Roques, C, Roux, P, Rozas, J, Sanchez-Gracia, A, Sanchez-Herrero, JF, Santesmasses, D, Scatoni, I, Serre, R-F, Tang, M, Tian, W, Umina, PA, van Munster, M, Vincent-Monegat, C, Wemmer, J, Wilson, ACC, Zhang, Y, Zhao, C, Zhao, J, Zhao, S, Zhou, X, Delmotte, F, Tagu, D, Rispe, C, Legeai, F, Nabity, PD, Fernandez, R, Arora, AK, Baa-Puyoulet, P, Banfill, CR, Bao, L, Barbera, M, Bouallegue, M, Bretaudeau, A, Brisson, JA, Calevro, F, Capy, P, Catrice, O, Chertemps, T, Couture, C, Deliere, L, Douglas, AE, Dufault-Thompson, K, Escuer, P, Feng, H, Forneck, A, Gabaldon, T, Guigo, R, Hilliou, F, Hinojosa-Alvarez, S, Hsiao, Y-M, Hudaverdian, S, Jacquin-Joly, E, James, EB, Johnston, S, Joubard, B, Le Goff, G, Le Trionnaire, G, Librado, P, Liu, S, Lombaert, E, Lu, H-L, Maibeche, M, Makni, M, Marcet-Houben, M, Martinez-Torres, D, Meslin, C, Montagne, N, Moran, NA, Papura, D, Parisot, N, Rahbe, Y, Lopes, MR, Ripoll-Cladellas, A, Robin, S, Roques, C, Roux, P, Rozas, J, Sanchez-Gracia, A, Sanchez-Herrero, JF, Santesmasses, D, Scatoni, I, Serre, R-F, Tang, M, Tian, W, Umina, PA, van Munster, M, Vincent-Monegat, C, Wemmer, J, Wilson, ACC, Zhang, Y, Zhao, C, Zhao, J, Zhao, S, Zhou, X, Delmotte, F, and Tagu, D
- Abstract
Background Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world. Conclusions The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
- Published
- 2020
5. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest (vol 18, 90, 2020)
- Author
-
Rispe, C, Legeai, F, Nabity, PD, Fernandez, R, Arora, AK, Baa-Puyoulet, P, Banfill, CR, Bao, L, Barbera, M, Bouallegue, M, Bretaudeau, A, Brisson, JA, Calevro, F, Capy, P, Catrice, O, Chertemps, T, Couture, C, Deliere, L, Douglas, AE, Dufault-Thompson, K, Escuer, P, Feng, H, Forneck, A, Gabaldon, T, Guigo, R, Hilliou, F, Hinojosa-Alvarez, S, Hsiao, Y-M, Hudaverdian, S, Jacquin-Joly, E, James, EB, Johnston, S, Joubard, B, Le Goff, G, Le Trionnaire, G, Librado, P, Liu, S, Lombaert, E, Lu, H-L, Maibeche, M, Makni, M, Marcet-Houben, M, Martinez-Torres, D, Meslin, C, Montagne, N, Moran, NA, Papura, D, Parisot, N, Rahbe, Y, Lopes, MR, Ripoll-Cladellas, A, Robin, S, Roques, C, Roux, P, Rozas, J, Sanchez-Gracia, A, Sanchez-Herrero, JF, Santesmasses, D, Scatoni, I, Serre, R-F, Tang, M, Tian, W, Umina, PA, van Munster, M, Vincent-Monegat, C, Wemmer, J, Wilson, ACC, Zhang, Y, Zhao, C, Zhao, J, Zhao, S, Zhou, X, Delmotte, F, Tagu, D, Rispe, C, Legeai, F, Nabity, PD, Fernandez, R, Arora, AK, Baa-Puyoulet, P, Banfill, CR, Bao, L, Barbera, M, Bouallegue, M, Bretaudeau, A, Brisson, JA, Calevro, F, Capy, P, Catrice, O, Chertemps, T, Couture, C, Deliere, L, Douglas, AE, Dufault-Thompson, K, Escuer, P, Feng, H, Forneck, A, Gabaldon, T, Guigo, R, Hilliou, F, Hinojosa-Alvarez, S, Hsiao, Y-M, Hudaverdian, S, Jacquin-Joly, E, James, EB, Johnston, S, Joubard, B, Le Goff, G, Le Trionnaire, G, Librado, P, Liu, S, Lombaert, E, Lu, H-L, Maibeche, M, Makni, M, Marcet-Houben, M, Martinez-Torres, D, Meslin, C, Montagne, N, Moran, NA, Papura, D, Parisot, N, Rahbe, Y, Lopes, MR, Ripoll-Cladellas, A, Robin, S, Roques, C, Roux, P, Rozas, J, Sanchez-Gracia, A, Sanchez-Herrero, JF, Santesmasses, D, Scatoni, I, Serre, R-F, Tang, M, Tian, W, Umina, PA, van Munster, M, Vincent-Monegat, C, Wemmer, J, Wilson, ACC, Zhang, Y, Zhao, C, Zhao, J, Zhao, S, Zhou, X, Delmotte, F, and Tagu, D
- Abstract
An amendment to this paper has been published and can be accessed via the original article.
- Published
- 2020
6. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation
- Author
-
Maire, J, Vincent-Monegat, C, Balmand, S, Vallier, A, Herve, M, Masson, F, Parisot, N, Vigneron, A, Anselme, C, Perrin, J, Orlans, J, Rahioui, I, Da Silva, P, Fauvarque, M-O, Mengin-Lecreulx, D, Zaidman-Remy, A, Heddi, A, Maire, J, Vincent-Monegat, C, Balmand, S, Vallier, A, Herve, M, Masson, F, Parisot, N, Vigneron, A, Anselme, C, Perrin, J, Orlans, J, Rahioui, I, Da Silva, P, Fauvarque, M-O, Mengin-Lecreulx, D, Zaidman-Remy, A, and Heddi, A
- Abstract
Long-term intracellular symbiosis (or endosymbiosis) is widely distributed across invertebrates and is recognized as a major driving force in evolution. However, the maintenance of immune homeostasis in organisms chronically infected with mutualistic bacteria is a challenging task, and little is known about the molecular processes that limit endosymbiont immunogenicity and host inflammation. Here, we investigated peptidoglycan recognition protein (PGRP)-encoding genes in the cereal weevil Sitophilus zeamais's association with Sodalis pierantonius endosymbiont. We discovered that weevil pgrp-lb generates three transcripts via alternative splicing and differential regulation. A secreted isoform is expressed in insect tissues under pathogenic conditions through activation of the PGRP-LC receptor of the immune deficiency pathway. In addition, cytosolic and transmembrane isoforms are permanently produced within endosymbiont-bearing organ, the bacteriome, in a PGRP-LC-independent manner. Bacteriome isoforms specifically cleave the tracheal cytotoxin (TCT), a peptidoglycan monomer released by endosymbionts. pgrp-lb silencing by RNAi results in TCT escape from the bacteriome to other insect tissues, where it chronically activates the host systemic immunity through PGRP-LC. While such immune deregulations did not impact endosymbiont load, they did negatively affect host physiology, as attested by a diminished sexual maturation of adult weevils. Whereas pgrp-lb was first described in pathogenic interactions, this work shows that, in an endosymbiosis context, specific bacteriome isoforms have evolved, allowing endosymbiont TCT scavenging and preventing chronic endosymbiont-induced immune responses, thus promoting host homeostasis.
- Published
- 2019
7. Propositional Logic for Efficient Microbial Community Assessment by DNA Microarray Data Analysis
- Author
-
Jaziri, F., Ribiere, C., Gasc, C., Parisot, N., Defois, C., Beugnot, R., APPADOO, O.K., Peyretaillade, E., Hill, David R.C., Peyret, P., Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), DOREAU, Bastien, and Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Published
- 2015
8. Distribution of Dehalococcoidia in the anaerobic deep water of a remote meromictic crater lake and detection of Dehalococcoidia-derived reductive dehalogenase homologous genes
- Author
-
Biderre-Petit, C., Dugat-Bony, E., Mege, M., Parisot, N., Adrian, Lorenz, Moné, A., Denonfoux, J., Peyretaillade, E., Debroas, D., Boucher, D., Peyret, P., Biderre-Petit, C., Dugat-Bony, E., Mege, M., Parisot, N., Adrian, Lorenz, Moné, A., Denonfoux, J., Peyretaillade, E., Debroas, D., Boucher, D., and Peyret, P.
- Abstract
Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.
- Published
- 2016
9. Annotation et évolution des familles de transporteurs chez le puceron du pois Acyrthosiphon pisum
- Author
-
Parisot, N., An algorithmic view on genomes, cells, and environments (BAMBOO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM] ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2010
10. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems
- Author
-
Peyretaillade, E, primary, Boucher, D, additional, Parisot, N, additional, Gasc, C, additional, Butler, R, additional, Pombert, J-F, additional, Lerat, E, additional, and Peyret, P, additional
- Published
- 2014
- Full Text
- View/download PDF
11. PhylOPDb: a 16S rRNA oligonucleotide probe database for prokaryotic identification
- Author
-
Jaziri, F., primary, Parisot, N., additional, Abid, A., additional, Denonfoux, J., additional, Ribiere, C., additional, Gasc, C., additional, Boucher, D., additional, Brugere, J.-F., additional, Mahul, A., additional, Hill, D. R. C., additional, Peyretaillade, E., additional, and Peyret, P., additional
- Published
- 2014
- Full Text
- View/download PDF
12. Gene Capture Coupled to High-Throughput Sequencing as a Strategy for Targeted Metagenome Exploration
- Author
-
Denonfoux, J., primary, Parisot, N., additional, Dugat-Bony, E., additional, Biderre-Petit, C., additional, Boucher, D., additional, Morgavi, D. P., additional, Le Paslier, D., additional, Peyretaillade, E., additional, and Peyret, P., additional
- Published
- 2013
- Full Text
- View/download PDF
13. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems.
- Author
-
Peyretaillade, E, Boucher, D, Parisot, N, Gasc, C, Butler, R, Pombert, J-F, Lerat, E, and Peyret, P
- Subjects
MICROSPORIDIA ,GENOMES ,PARASITES ,FUNGAL spores ,ECOSYSTEMS - Abstract
Fungal species play extremely important roles in ecosystems. Clustered at the base of the fungal kingdom are Microsporidia, a group of obligate intracellular eukaryotes infecting multiple animal lineages. Because of their large host spectrum and their implications in host population regulation, they influence food webs, and accordingly, ecosystem structure and function. Unfortunately, their ecological role is not well understood. Present also as highly resistant spores in the environment, their characterisation requires special attention. Different techniques based on direct isolation and/or molecular approaches can be considered to elucidate their role in the ecosystems, but integrating environmental and genomic data (for example, genome architecture, core genome, transcriptional and translational signals) is crucial to better understand the diversity and adaptive capacities of Microsporidia. Here, we review the current status of Microsporidia in trophic networks; the various genomics tools that could be used to ensure identification and evaluate diversity and abundance of these organisms; and how these tools could be used to explore the microsporidian life cycle in different environments. Our understanding of the evolution of these widespread parasites is currently impaired by limited sampling, and we have no doubt witnessed but a small subset of their diversity. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
14. P-798 Phase I study of topotecan and bortezomib (Vc) withpharmacokinetic and pharmacodynamic correlates
- Author
-
Tomita, M., primary, Wright, J., additional, Kellogg, R., additional, Parisot, N., additional, Clark, M., additional, Li, X., additional, Davies, M., additional, Kashala, A., additional, Trehu, E., additional, and Murren, J., additional
- Published
- 2005
- Full Text
- View/download PDF
15. Correlations between BRCA status, molecular markers and clinical variables in early onset conservatively managed breast cancer
- Author
-
Kim, S., primary, Rimm, D.L., additional, Carter, D., additional, Khan, A., additional, Parisot, N., additional, Franco, M.A., additional, Bale, A., additional, and Haffty, B., additional
- Published
- 2001
- Full Text
- View/download PDF
16. The correlation of clinical and pathological features with outcome in patients with ductal carcinoma in situ of the breast treated with breast-conserving surgery and radiation therapy
- Author
-
Rodrigues, N.A., primary, Carter, D., additional, Parisot, N., additional, Choi, D., additional, and Haffty, B.G., additional
- Published
- 2001
- Full Text
- View/download PDF
17. Annotation of transcription factors, chromatin-associated factors, and basal transcription machinery in the pea aphid, Acyrthosiphon pisum, and development of the ATFdb database, a resource for studies of transcriptional regulation.
- Author
-
Parisot N, Ribeiro Lopes M, Peignier S, Baa-Puyoulet P, Charles H, Calevro F, and Callaerts P
- Abstract
The pea aphid, Acyrthosiphon pisum, is an emerging model system in functional and comparative genomics, in part due to the availability of new genomic approaches and the different sequencing and annotation efforts that the community has dedicated to this important crop pest insect. The pea aphid is also used as a model to study fascinating biological traits of aphids, such as their extensive polyphenisms, their bacteriocyte-confined nutritional symbiosis, or their adaptation to the highly unbalanced diet represented by phloem sap. To get insights into the molecular basis of all these processes, it is important to have an appropriate annotation of transcription factors (TFs), which would enable the reconstruction/inference of gene regulatory networks in aphids. Using the latest version of the A. pisum genome assembly and annotation, which represents the first chromosome-level pea aphid genome, we annotated the complete repertoire of A. pisum TFs and complemented this information by annotating genes encoding chromatin-associated and basal transcription machinery proteins. These annotations were done combining information from the model Drosophila melanogaster, for which we also provide a revisited list of these proteins, and de novo prediction. The comparison between the two model systems allowed the identification of major losses or expansions in each genome, while a deeper analysis was made of ZNF TFs (with certain families expanded in the pea aphid), and the Hox gene cluster (showing reorganization in gene position in the pea aphid compared to D. melanogaster). All annotations are available to the community through the Aphid Transcription Factors database (ATFdb), consolidating the various annotations we generated. ATFdb serves as a valuable resource for gene regulation studies in aphids., (Copyright © 2024. Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
18. PacBio Hi-Fi genome assembly of Sipha maydis, a model for the study of multipartite mutualism in insects.
- Author
-
Renoz F, Parisot N, Baa-Puyoulet P, Gerlin L, Fakhour S, Charles H, Hance T, and Calevro F
- Subjects
- Animals, Metabolic Networks and Pathways, Bacteria, Aphids genetics, Aphids microbiology, Symbiosis, Genome, Insect
- Abstract
Dependence on multiple nutritional endosymbionts has evolved repeatedly in insects feeding on unbalanced diets. However, reference genomes for species hosting multi-symbiotic nutritional systems are lacking, even though they are essential for deciphering the processes governing cooperative life between insects and anatomically integrated symbionts. The cereal aphid Sipha maydis is a promising model for addressing these issues, as it has evolved a nutritional dependence on two bacterial endosymbionts that complement each other. In this study, we used PacBio High fidelity (HiFi) long-read sequencing to generate a highly contiguous genome assembly of S. maydis with a length of 410 Mb, 3,570 contigs with a contig N50 length of 187 kb, and BUSCO completeness of 95.5%. We identified 117 Mb of repetitive sequences, accounting for 29% of the genome assembly, and predicted 24,453 protein-coding genes, of which 2,541 were predicted enzymes included in an integrated metabolic network with the two aphid-associated endosymbionts. These resources provide valuable genetic and metabolic information for understanding the evolution and functioning of multi-symbiotic systems in insects., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
19. MicroAnnot: A Dedicated Workflow for Accurate Microsporidian Genome Annotation.
- Author
-
Tournayre J, Polonais V, Wawrzyniak I, Akossi RF, Parisot N, Lerat E, Delbac F, Souvignet P, Reichstadt M, and Peyretaillade E
- Subjects
- Workflow, Biological Evolution, DNA Transposable Elements genetics, Databases, Factual, Microsporidia genetics
- Abstract
With nearly 1700 species, Microsporidia represent a group of obligate intracellular eukaryotes with veterinary, economic and medical impacts. To help understand the biological functions of these microorganisms, complete genome sequencing is routinely used. Nevertheless, the proper prediction of their gene catalogue is challenging due to their taxon-specific evolutionary features. As innovative genome annotation strategies are needed to obtain a representative snapshot of the overall lifestyle of these parasites, the MicroAnnot tool, a dedicated workflow for microsporidian sequence annotation using data from curated databases of accurately annotated microsporidian genes, has been developed. Furthermore, specific modules have been implemented to perform small gene (<300 bp) and transposable element identification. Finally, functional annotation was performed using the signature-based InterProScan software. MicroAnnot's accuracy has been verified by the re-annotation of four microsporidian genomes for which structural annotation had previously been validated. With its comparative approach and transcriptional signal identification method, MicroAnnot provides an accurate prediction of translation initiation sites, an efficient identification of transposable elements, as well as high specificity and sensitivity for microsporidian genes, including those under 300 bp.
- Published
- 2024
- Full Text
- View/download PDF
20. Coordination of host and endosymbiont gene expression governs endosymbiont growth and elimination in the cereal weevil Sitophilus spp.
- Author
-
Ferrarini MG, Vallier A, Vincent-Monégat C, Dell'Aglio E, Gillet B, Hughes S, Hurtado O, Condemine G, Zaidman-Rémy A, Rebollo R, Parisot N, and Heddi A
- Subjects
- Animals, Edible Grain, Enterobacteriaceae metabolism, Bacteria genetics, Symbiosis, Gene Expression, Weevils microbiology
- Abstract
Background: Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development., Results: We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics. We unraveled a constant arms race in which different biological functions are intertwined and coregulated across both partners. These include immunity, metabolism, metal control, apoptosis, and bacterial stress response., Conclusions: The study of these tightly regulated functions, which are at the center of symbiotic regulations, provides evidence on how hosts and bacteria finely tune their gene expression and respond to different physiological challenges constrained by insect development in a nutritionally limited ecological niche. Video Abstract., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
21. Differential responses of Ceratitis capitata to infection by the entomopathogenic fungus Purpureocillium lilacinum.
- Author
-
Djobbi W, Msaad Guerfali M, Vallier A, Charaabi K, Charles H, Maire J, Parisot N, Hamden H, Fadhl S, Heddi A, and Cherif A
- Subjects
- Animals, Male, Female, Insect Control methods, Digestive System, Ceratitis capitata physiology, Hypocreales
- Abstract
The medfly Ceratitis capitata is one of the most damaging fruit pests with quarantine significance due to its extremely wide host range. The use of entomopathogenic fungi constitutes a promising approach with potential applications in integrated pest management. Furthermore, developing insect control methods can involve the use of fungal machinery to cause metabolic disruption, which may increase its effectiveness by impairing insect development. Insect species, including C. capitata, relies on reproduction potential, nutrient reserves, metabolic activities, and immune response for survival. Accordingly, the purpose of this study was to investigate the impacts of the entomopathogenic fungus Purpureocillium lilacinum on C. capitata pre-mortality. The medfly V8 strain was subjected to laboratory bioassays, which consisted on determining the virulence of P. lilacinum on the medfly. Purpureocillium lilacinum was applied on abdominal topical of 5-day-old males and females. Following the fungal inoculation, we have confirmed (i) a significant increase in tissue sugar content, (ii) a significant decrease in carbohydrase activities, digestive glycosyl hydrolase, and proteinase activities in whole midguts of treated flies, (iii) the antimicrobial peptides (AMPs) genes expression profile was significantly influenced by fly gender, fly status (virgin, mature, and mated), and time after infection, but infection itself had no discernible impact on the AMPs for the genes that were examined. This study provides the first insight into how P. lilacinum could affect C. capitata physiological mechanisms and provides the foundation for considering P. lilacinum as a novel, promising biocontrol agent., Competing Interests: We have no conflicts of interest to disclose., (Copyright: © 2023 Djobbi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
22. Endosymbiont-containing germarium transcriptional survey in a cereal weevil depicts downregulation of immune effectors at the onset of sexual maturity.
- Author
-
Ferrarini MG, Vallier A, Dell'Aglio E, Balmand S, Vincent-Monégat C, Debbache M, Maire J, Parisot N, Zaidman-Rémy A, Heddi A, and Rebollo R
- Abstract
Insects often establish long-term relationships with intracellular symbiotic bacteria, i.e., endosymbionts, that provide them with essential nutrients such as amino acids and vitamins. Endosymbionts are typically confined within specialized host cells called bacteriocytes that may form an organ, the bacteriome. Compartmentalization within host cells is paramount for protecting the endosymbionts and also avoiding chronic activation of the host immune system. In the cereal weevil Sitophilus oryzae, bacteriomes are present as a single organ at the larval foregut-midgut junction, and in adults, at the apex of midgut mesenteric caeca and at the apex of the four ovarioles. While the adult midgut endosymbionts experience a drastic proliferation during early adulthood followed by complete elimination through apoptosis and autophagy, ovarian endosymbionts are maintained throughout the weevil lifetime by unknown mechanisms. Bacteria present in ovarian bacteriomes are thought to be involved in the maternal transmission of endosymbionts through infection of the female germline, but the exact mode of transmission is not fully understood. Here, we show that endosymbionts are able to colonize the germarium in one-week-old females, pinpointing a potential infection route of oocytes. To identify potential immune regulators of ovarian endosymbionts, we have analyzed the transcriptomes of the ovarian bacteriomes through young adult development, from one-day-old adults to sexually mature ones. In contrast with midgut bacteriomes, immune effectors are downregulated in ovarian bacteriomes at the onset of sexual maturation. We hypothesize that relaxation of endosymbiont control by antimicrobial peptides might allow bacterial migration and potential oocyte infection, ensuring endosymbiont transmission., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Ferrarini, Vallier, Dell’Aglio, Balmand, Vincent-Monégat, Debbache, Maire, Parisot, Zaidman-Rémy, Heddi and Rebollo.)
- Published
- 2023
- Full Text
- View/download PDF
23. GReNaDIne: A Data-Driven Python Library to Infer Gene Regulatory Networks from Gene Expression Data.
- Author
-
Schmitt P, Sorin B, Frouté T, Parisot N, Calevro F, and Peignier S
- Subjects
- Saint Vincent and the Grenadines, Software, Gene Expression, Gene Regulatory Networks, Computational Biology methods
- Abstract
Context: Inferring gene regulatory networks (GRN) from high-throughput gene expression data is a challenging task for which different strategies have been developed. Nevertheless, no ever-winning method exists, and each method has its advantages, intrinsic biases, and application domains. Thus, in order to analyze a dataset, users should be able to test different techniques and choose the most appropriate one. This step can be particularly difficult and time consuming, since most methods' implementations are made available independently, possibly in different programming languages. The implementation of an open-source library containing different inference methods within a common framework is expected to be a valuable toolkit for the systems biology community. Results : In this work, we introduce GReNaDIne (Gene Regulatory Network Data-driven Inference), a Python package that implements 18 machine learning data-driven gene regulatory network inference methods. It also includes eight generalist preprocessing techniques, suitable for both RNA-seq and microarray dataset analysis, as well as four normalization techniques dedicated to RNA-seq. In addition, this package implements the possibility to combine the results of different inference tools to form robust and efficient ensembles. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. The open-source GReNaDIne Python package is made freely available in a dedicated GitLab repository, as well as in the official third-party software repository PyPI Python Package Index. The latest documentation on the GReNaDIne library is also available at Read the Docs, an open-source software documentation hosting platform. Contribution : The GReNaDIne tool represents a technological contribution to the field of systems biology. This package can be used to infer gene regulatory networks from high-throughput gene expression data using different algorithms within the same framework. In order to analyze their datasets, users can apply a battery of preprocessing and postprocessing tools and choose the most adapted inference method from the GReNaDIne library and even combine the output of different methods to obtain more robust results. The results format provided by GReNaDIne is compatible with well-known complementary refinement tools such as PYSCENIC.
- Published
- 2023
- Full Text
- View/download PDF
24. Aphid BCR4 Structure and Activity Uncover a New Defensin Peptide Superfamily.
- Author
-
Loth K, Parisot N, Paquet F, Terrasson H, Sivignon C, Rahioui I, Ribeiro Lopes M, Gaget K, Duport G, Delmas AF, Aucagne V, Heddi A, Calevro F, and da Silva P
- Subjects
- Animals, Phylogeny, Cysteine metabolism, Biological Control Agents metabolism, Symbiosis, Peptides pharmacology, Peptides metabolism, Disulfides metabolism, Defensins genetics, Defensins pharmacology, Defensins metabolism, Aphids metabolism, Insecticides pharmacology, Insecticides metabolism
- Abstract
Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum . They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.
- Published
- 2022
- Full Text
- View/download PDF
25. Efficient compartmentalization in insect bacteriomes protects symbiotic bacteria from host immune system.
- Author
-
Ferrarini MG, Dell'Aglio E, Vallier A, Balmand S, Vincent-Monégat C, Hughes S, Gillet B, Parisot N, Zaidman-Rémy A, Vieira C, Heddi A, and Rebollo R
- Subjects
- Animals, Bacteria, Immune System, Insect Proteins, Symbiosis, Peptidoglycan, Weevils microbiology
- Abstract
Background: Many insects house symbiotic intracellular bacteria (endosymbionts) that provide them with essential nutrients, thus promoting the usage of nutrient-poor habitats. Endosymbiont seclusion within host specialized cells, called bacteriocytes, often organized in a dedicated organ, the bacteriome, is crucial in protecting them from host immune defenses while avoiding chronic host immune activation. Previous evidence obtained in the cereal weevil Sitophilus oryzae has shown that bacteriome immunity is activated against invading pathogens, suggesting endosymbionts might be targeted and impacted by immune effectors during an immune challenge. To pinpoint any molecular determinants associated with such challenges, we conducted a dual transcriptomic analysis of S. oryzae's bacteriome subjected to immunogenic peptidoglycan fragments., Results: We show that upon immune challenge, the bacteriome actively participates in the innate immune response via induction of antimicrobial peptides (AMPs). Surprisingly, endosymbionts do not undergo any transcriptomic changes, indicating that this potential threat goes unnoticed. Immunohistochemistry showed that TCT-induced AMPs are located outside the bacteriome, excluding direct contact with the endosymbionts., Conclusions: This work demonstrates that endosymbiont protection during an immune challenge is mainly achieved by efficient confinement within bacteriomes, which provides physical separation between host systemic response and endosymbionts. Video Abstract., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
26. The Di-Symbiotic Systems in the Aphids Sipha maydis and Periphyllus lyropictus Provide a Contrasting Picture of Recent Co-Obligate Nutritional Endosymbiosis in Aphids.
- Author
-
Renoz F, Ambroise J, Bearzatto B, Fakhour S, Parisot N, Ribeiro Lopes M, Gala JL, Calevro F, and Hance T
- Abstract
Dependence on multiple nutritional bacterial symbionts forming a metabolic unit has repeatedly evolved in many insect species that feed on nutritionally unbalanced diets such as plant sap. This is the case for aphids of the subfamilies Lachninae and Chaitophorinae, which have evolved di-symbiotic systems in which the ancient obligate nutritional symbiont Buchnera aphidicola is metabolically complemented by an additional nutritional symbiont acquired more recently. Deciphering how different symbionts integrate both metabolically and anatomically in such systems is crucial to understanding how complex nutritional symbiotic systems function and evolve. In this study, we sequenced and analyzed the genomes of the symbionts B. aphidicola and Serratia symbiotica associated with the Chaitophorinae aphids Sipha maydis and Periphyllus lyropictus . Our results show that, in these two species, B. aphidicola and S. symbiotica complement each other metabolically (and their hosts) for the biosynthesis of essential amino acids and vitamins, but with distinct metabolic reactions supported by each symbiont depending on the host species. Furthermore, the S. symbiotica symbiont associated with S. maydis appears to be strictly compartmentalized into the specialized host cells housing symbionts in aphids, the bacteriocytes, whereas the S. symbiotica symbiont associated with P. lyropictus exhibits a highly invasive phenotype, presumably because it is capable of expressing a larger set of virulence factors, including a complete flagellum for bacterial motility. Such contrasting levels of metabolic and anatomical integration for two S. symbiotica symbionts that were recently acquired as nutritional co-obligate partners reflect distinct coevolutionary processes specific to each association.
- Published
- 2022
- Full Text
- View/download PDF
27. The transposable element-rich genome of the cereal pest Sitophilus oryzae.
- Author
-
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, and Heddi A
- Subjects
- Animals, Cell Communication, DNA Transposable Elements genetics, Edible Grain, Humans, Coleoptera, Weevils genetics
- Abstract
Background: The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions., Results: We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis., Conclusions: Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes., (© 2021. The Author(s).)
- Published
- 2021
- Full Text
- View/download PDF
28. Isolation of Insect Bacteriocytes as a Platform for Transcriptomic Analyses.
- Author
-
Ribeiro Lopes M, Simonet P, Duport G, Gaget K, Balmand S, Sugio A, Simon JC, Parisot N, and Calevro F
- Subjects
- Animals, Reverse Transcriptase Polymerase Chain Reaction, Symbiosis, Aphids genetics, Aphids microbiology, Gene Expression Profiling methods, Transcriptome genetics
- Abstract
Over the past few decades, various techniques have been developed and optimized for the accurate measurement of RNA abundance in cells or tissues. These methods have been instrumental in gaining insight in complex systems such as host-symbiont associations. The pea aphid model has recently emerged as a powerful and experimentally tractable system for studying symbiotic relationships and it is the subject of a growing number of molecular studies. Nevertheless, the lack of standardized protocols for the collection of bacteriocytes, the specialized host cells harboring the symbionts, has limited its use. This chapter provides a simple, step-by-step dissection protocol for the rapid isolation of aphid bacteriocytes. We then describe an adapted protocol for efficient extraction and purification of bacteriocyte RNA that can be used for most downstream transcriptomic analyses.
- Published
- 2021
- Full Text
- View/download PDF
29. Evolutionary novelty in the apoptotic pathway of aphids.
- Author
-
Ribeiro Lopes M, Parisot N, Gaget K, Huygens C, Peignier S, Duport G, Orlans J, Charles H, Baatsen P, Jousselin E, Da Silva P, Hens K, Callaerts P, and Calevro F
- Subjects
- Animals, Animals, Genetically Modified, Caspases chemistry, Caspases metabolism, Drosophila melanogaster genetics, Eye cytology, Eye pathology, Gene Expression Regulation, Genome, Insect, Inhibitor of Apoptosis Proteins metabolism, Insect Proteins genetics, Phylogeny, Protein Domains, Aphids cytology, Aphids physiology, Apoptosis physiology, Insect Proteins chemistry, Insect Proteins metabolism
- Abstract
Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster , and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum , an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphid-specific functions., Competing Interests: The authors declare no competing interest., (Copyright © 2020 the Author(s). Published by PNAS.)
- Published
- 2020
- Full Text
- View/download PDF
30. Correction to: The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest.
- Author
-
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L, Barberà M, Bouallègue M, Bretaudeau A, Brisson JA, Calevro F, Capy P, Catrice O, Chertemps T, Couture C, Delière L, Douglas AE, Dufault-Thompson K, Escuer P, Feng H, Forneck A, Gabaldón T, Guigó R, Hilliou F, Hinojosa-Alvarez S, Hsiao YM, Hudaverdian S, Jacquin-Joly E, James EB, Johnston S, Joubard B, Le Goff G, Le Trionnaire G, Librado P, Liu S, Lombaert E, Lu HL, Maïbèche M, Makni M, Marcet-Houben M, Martínez-Torres D, Meslin C, Montagné N, Moran NA, Papura D, Parisot N, Rahbé Y, Lopes MR, Ripoll-Cladellas A, Robin S, Roques C, Roux P, Rozas J, Sánchez-Gracia A, Sánchez-Herrero JF, Santesmasses D, Scatoni I, Serre RF, Tang M, Tian W, Umina PA, van Munster M, Vincent-Monégat C, Wemmer J, Wilson ACC, Zhang Y, Zhao C, Zhao J, Zhao S, Zhou X, Delmotte F, and Tagu D
- Abstract
An amendment to this paper has been published and can be accessed via the original article.
- Published
- 2020
- Full Text
- View/download PDF
31. Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil.
- Author
-
Maire J, Parisot N, Galvao Ferrarini M, Vallier A, Gillet B, Hughes S, Balmand S, Vincent-Monégat C, Zaidman-Rémy A, and Heddi A
- Subjects
- Animals, Bacterial Physiological Phenomena, Biological Evolution, Digestive System microbiology, Endophytes genetics, Endophytes isolation & purification, Endophytes physiology, Enterobacteriaceae genetics, Enterobacteriaceae isolation & purification, Female, Larva growth & development, Larva microbiology, Larva physiology, Male, Metamorphosis, Biological, Weevils physiology, Enterobacteriaceae physiology, Symbiosis, Weevils growth & development, Weevils microbiology
- Abstract
Bacterial intracellular symbiosis (endosymbiosis) is widespread in nature and impacts many biological processes. In holometabolous symbiotic insects, metamorphosis entails a complete and abrupt internal reorganization that creates a constraint for endosymbiont transmission from larvae to adults. To assess how endosymbiosis copes-and potentially evolves-throughout this major host-tissue reorganization, we used the association between the cereal weevil Sitophilus oryzae and the bacterium Sodalis pierantonius as a model system. S. pierantonius are contained inside specialized host cells, the bacteriocytes, that group into an organ, the bacteriome. Cereal weevils require metabolic inputs from their endosymbiont, particularly during adult cuticle synthesis, when endosymbiont load increases dramatically. By combining dual RNA-sequencing analyses and cell imaging, we show that the larval bacteriome dissociates at the onset of metamorphosis and releases bacteriocytes that undergo endosymbiosis-dependent transcriptomic changes affecting cell motility, cell adhesion, and cytoskeleton organization. Remarkably, bacteriocytes turn into spindle cells and migrate along the midgut epithelium, thereby conveying endosymbionts to midgut sites where future mesenteric caeca will develop. Concomitantly, endosymbiont genes encoding a type III secretion system and a flagellum apparatus are transiently up-regulated while endosymbionts infect putative stem cells and enter their nuclei. Infected cells then turn into new differentiated bacteriocytes and form multiple new bacteriomes in adults. These findings show that endosymbiosis reorganization in a holometabolous insect relies on a synchronized host-symbiont molecular and cellular "choreography" and illustrates an adaptive feature that promotes bacteriome multiplication to match increased metabolic requirements in emerging adults., Competing Interests: The authors declare no competing interest.
- Published
- 2020
- Full Text
- View/download PDF
32. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest.
- Author
-
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L, Barberà M, Bouallègue M, Bretaudeau A, Brisson JA, Calevro F, Capy P, Catrice O, Chertemps T, Couture C, Delière L, Douglas AE, Dufault-Thompson K, Escuer P, Feng H, Forneck A, Gabaldón T, Guigó R, Hilliou F, Hinojosa-Alvarez S, Hsiao YM, Hudaverdian S, Jacquin-Joly E, James EB, Johnston S, Joubard B, Le Goff G, Le Trionnaire G, Librado P, Liu S, Lombaert E, Lu HL, Maïbèche M, Makni M, Marcet-Houben M, Martínez-Torres D, Meslin C, Montagné N, Moran NA, Papura D, Parisot N, Rahbé Y, Lopes MR, Ripoll-Cladellas A, Robin S, Roques C, Roux P, Rozas J, Sánchez-Gracia A, Sánchez-Herrero JF, Santesmasses D, Scatoni I, Serre RF, Tang M, Tian W, Umina PA, van Munster M, Vincent-Monégat C, Wemmer J, Wilson ACC, Zhang Y, Zhao C, Zhao J, Zhao S, Zhou X, Delmotte F, and Tagu D
- Subjects
- Animal Distribution, Animals, Introduced Species, Vitis, Adaptation, Biological genetics, Biological Evolution, Genome, Insect physiology, Hemiptera genetics
- Abstract
Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture., Results: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world., Conclusions: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
- Published
- 2020
- Full Text
- View/download PDF
33. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera.
- Author
-
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, and Niehuis O
- Subjects
- Amino Acid Sequence, Animals, Conserved Sequence, DNA Transposable Elements, Female, Gene Dosage, Glycoproteins genetics, Herbivory genetics, Immunity genetics, Insect Proteins genetics, Male, Multigene Family, Receptors, Odorant genetics, Social Behavior, Vision, Ocular genetics, Genetic Speciation, Genome, Insect, Host-Parasite Interactions genetics, Hymenoptera genetics
- Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2020
- Full Text
- View/download PDF
34. Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth.
- Author
-
Consuegra J, Grenier T, Baa-Puyoulet P, Rahioui I, Akherraz H, Gervais H, Parisot N, da Silva P, Charles H, Calevro F, and Leulier F
- Subjects
- Acetobacter genetics, Acetobacter metabolism, Amino Acids metabolism, Animal Nutritional Physiological Phenomena, Animals, Drosophila melanogaster growth & development, Drosophila melanogaster metabolism, Gastrointestinal Microbiome, Host Microbial Interactions, Lactobacillus genetics, Lactobacillus metabolism, Larva growth & development, Larva metabolism, Larva microbiology, Larva physiology, Metabolic Networks and Pathways, Micronutrients metabolism, Species Specificity, Acetobacter physiology, Drosophila melanogaster microbiology, Drosophila melanogaster physiology, Lactobacillus physiology, Nutritional Requirements physiology
- Abstract
The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host's diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
35. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.
- Author
-
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, and Richards S
- Subjects
- Amino Acid Sequence, Animals, CYS2-HIS2 Zinc Fingers, Feeding Behavior, Gene Dosage, Gene Expression Profiling, Gene Transfer, Horizontal, Genes, Homeobox, Hemiptera growth & development, Hemiptera metabolism, Pigmentation genetics, Smell, Transcription Factors genetics, Evolution, Molecular, Genome, Insect, Hemiptera genetics
- Abstract
Background: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae., Results: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding., Conclusions: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
- Published
- 2019
- Full Text
- View/download PDF
36. Weevil pgrp-lb prevents endosymbiont TCT dissemination and chronic host systemic immune activation.
- Author
-
Maire J, Vincent-Monégat C, Balmand S, Vallier A, Hervé M, Masson F, Parisot N, Vigneron A, Anselme C, Perrin J, Orlans J, Rahioui I, Da Silva P, Fauvarque MO, Mengin-Lecreulx D, Zaidman-Rémy A, and Heddi A
- Subjects
- Animals, Bacteria immunology, Bacteria metabolism, Carrier Proteins immunology, Cytotoxins, Host Microbial Interactions physiology, Insect Proteins genetics, Larva metabolism, Peptidoglycan immunology, Peptidoglycan metabolism, Protein Isoforms, Weevils genetics, Weevils metabolism, Carrier Proteins physiology, Host Microbial Interactions immunology, Symbiosis immunology
- Abstract
Long-term intracellular symbiosis (or endosymbiosis) is widely distributed across invertebrates and is recognized as a major driving force in evolution. However, the maintenance of immune homeostasis in organisms chronically infected with mutualistic bacteria is a challenging task, and little is known about the molecular processes that limit endosymbiont immunogenicity and host inflammation. Here, we investigated peptidoglycan recognition protein (PGRP)-encoding genes in the cereal weevil Sitophilus zeamais 's association with Sodalis pierantonius endosymbiont. We discovered that weevil pgrp-lb generates three transcripts via alternative splicing and differential regulation. A secreted isoform is expressed in insect tissues under pathogenic conditions through activation of the PGRP-LC receptor of the immune deficiency pathway. In addition, cytosolic and transmembrane isoforms are permanently produced within endosymbiont-bearing organ, the bacteriome, in a PGRP-LC-independent manner. Bacteriome isoforms specifically cleave the tracheal cytotoxin (TCT), a peptidoglycan monomer released by endosymbionts. pgrp-lb silencing by RNAi results in TCT escape from the bacteriome to other insect tissues, where it chronically activates the host systemic immunity through PGRP-LC. While such immune deregulations did not impact endosymbiont load, they did negatively affect host physiology, as attested by a diminished sexual maturation of adult weevils. Whereas pgrp-lb was first described in pathogenic interactions, this work shows that, in an endosymbiosis context, specific bacteriome isoforms have evolved, allowing endosymbiont TCT scavenging and preventing chronic endosymbiont-induced immune responses, thus promoting host homeostasis., Competing Interests: The authors declare no conflict of interest., (Copyright © 2019 the Author(s). Published by PNAS.)
- Published
- 2019
- Full Text
- View/download PDF
37. Identification by Tn-seq of Dickeya dadantii genes required for survival in chicory plants.
- Author
-
Royet K, Parisot N, Rodrigue A, Gueguen E, and Condemine G
- Subjects
- Bacterial Proteins genetics, Bacterial Proteins metabolism, DNA Transposable Elements genetics, Enterobacteriaceae genetics, Gene Expression Regulation, Bacterial genetics, Glycosylation, Virulence, Cichorium intybus microbiology, Enterobacteriaceae metabolism, Enterobacteriaceae pathogenicity
- Abstract
The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory. About 100 genes were identified showing decreased or increased fitness in the plant. Most had no previously attributed role in plant-bacterium interactions. Following our screening, in planta competition assays confirmed that the uridine monophosphate biosynthesis pathway and the purine biosynthesis pathway were essential to the survival of D. dadantii in the plant, as the mutants ∆carA, ∆purF, ∆purL, ∆guaB and ∆pyrE were unable to survive in the plant in contrast with the wild-type (WT) bacterium. This study also demonstrated that the biosynthetic pathways of leucine, cysteine and lysine were essential for bacterial survival in the plant and that RsmC and GcpA were important in the regulation of the infection process, as the mutants ∆rsmC and ∆gcpA were hypervirulent. Finally, our study showed that D. dadantii flagellin was glycosylated and that this modification conferred fitness to the bacterium during plant infection. Assay by this method of the large collections of environmental pathogenic strains now available will allow an easy and rapid identification of new virulence factors., (© 2018 The Authors. Molecular Plant Pathology Published by BSPP and John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
38. Bacteriocyte Reprogramming to Cope With Nutritional Stress in a Phloem Sap Feeding Hemipteran, the Pea Aphid Acyrthosiphon pisum .
- Author
-
Colella S, Parisot N, Simonet P, Gaget K, Duport G, Baa-Puyoulet P, Rahbé Y, Charles H, Febvay G, Callaerts P, and Calevro F
- Abstract
Nutritional symbioses play a central role in the ability of insects to thrive on unbalanced diets and in ensuring their evolutionary success. A genomic model for nutritional symbiosis comprises the hemipteran Acyrthosiphon pisum , and the gamma-3-proteobacterium, Buchnera aphidicola , with genomes encoding highly integrated metabolic pathways. A. pisum feeds exclusively on plant phloem sap, a nutritionally unbalanced diet highly variable in composition, thus raising the question of how this symbiotic system responds to nutritional stress. We addressed this by combining transcriptomic, phenotypic and life history trait analyses to determine the organismal impact of deprivation of tyrosine and phenylalanine. These two aromatic amino acids are essential for aphid development, are synthesized in a metabolic pathway for which the aphid host and the endosymbiont are interdependent, and their concentration can be highly variable in plant phloem sap. We found that this nutritional challenge does not have major phenotypic effects on the pea aphid, except for a limited weight reduction and a 2-day delay in onset of nymph laying. Transcriptomic analyses through aphid development showed a prominent response in bacteriocytes (the core symbiotic tissue which houses the symbionts), but not in gut, thus highlighting the role of bacteriocytes as major modulators of this homeostasis. This response does not involve a direct regulation of tyrosine and phenylalanine biosynthetic pathway and transporter genes. Instead, we observed an extensive transcriptional reprogramming of the bacteriocyte with a rapid down-regulation of genes encoding sugar transporters and genes required for sugar metabolism. Consistently, we observed continued overexpression of the A. pisum homolog of RRAD, a small GTPase implicated in repressing aerobic glycolysis. In addition, we found increased transcription of genes involved in proliferation, cell size control and signaling. We experimentally confirmed the significance of these gene expression changes detecting an increase in bacteriocyte number and cell size in vivo under tyrosine and phenylalanine depletion. Our results support a central role of bacteriocytes in the aphid response to amino acid deprivation: their transcriptional and cellular responses fine-tune host physiology providing the host insect with an effective way to cope with the challenges posed by the variability in composition of phloem sap.
- Published
- 2018
- Full Text
- View/download PDF
39. Bacteriocyte cell death in the pea aphid/ Buchnera symbiotic system.
- Author
-
Simonet P, Gaget K, Balmand S, Ribeiro Lopes M, Parisot N, Buhler K, Duport G, Vulsteke V, Febvay G, Heddi A, Charles H, Callaerts P, and Calevro F
- Subjects
- Animals, Cell Death, Lysosomes, Aphids microbiology, Buchnera physiology, Symbiosis physiology
- Abstract
Symbiotic associations play a pivotal role in multicellular life by facilitating acquisition of new traits and expanding the ecological capabilities of organisms. In insects that are obligatorily dependent on intracellular bacterial symbionts, novel host cells (bacteriocytes) or organs (bacteriomes) have evolved for harboring beneficial microbial partners. The processes regulating the cellular life cycle of these endosymbiont-bearing cells, such as the cell-death mechanisms controlling their fate and elimination in response to host physiology, are fundamental questions in the biology of symbiosis. Here we report the discovery of a cell-death process involved in the degeneration of bacteriocytes in the hemipteran insect Acyrthosiphon pisum This process is activated progressively throughout aphid adulthood and exhibits morphological features distinct from known cell-death pathways. By combining electron microscopy, immunohistochemistry, and molecular analyses, we demonstrated that the initial event of bacteriocyte cell death is the cytoplasmic accumulation of nonautophagic vacuoles, followed by a sequence of cellular stress responses including the formation of autophagosomes in intervacuolar spaces, activation of reactive oxygen species, and Buchnera endosymbiont degradation by the lysosomal system. We showed that this multistep cell-death process originates from the endoplasmic reticulum, an organelle exhibiting a unique reticular network organization spread throughout the entire cytoplasm and surrounding Buchnera aphidicola endosymbionts. Our findings provide insights into the cellular and molecular processes that coordinate eukaryotic host and endosymbiont homeostasis and death in a symbiotic system and shed light on previously unknown aspects of bacteriocyte biological functioning., Competing Interests: The authors declare no conflict of interest., (Copyright © 2018 the Author(s). Published by PNAS.)
- Published
- 2018
- Full Text
- View/download PDF
40. Comparative genomics of microsporidian genomes reveals a minimal non-coding RNA set and new insights for transcription in minimal eukaryotic genomes.
- Author
-
Belkorchia A, Pombert JF, Polonais V, Parisot N, Delbac F, Brugère JF, Peyret P, Gaspin C, and Peyretaillade E
- Subjects
- Base Sequence, Computer Simulation, Genomics, RNA, Small Nuclear metabolism, RNA, Small Nucleolar metabolism, Encephalitozoon genetics, Genome, Fungal, Nosema genetics, RNA, Untranslated metabolism, Transcription, Genetic
- Abstract
Microsporidia are ubiquitous intracellular pathogens whose opportunistic nature led to their increased recognition with the rise of the AIDS pandemic. As the RNA world was largely unexplored in this parasitic lineage, we developed a dedicated in silico methodology to carry out exhaustive identification of ncRNAs across the Encephalitozoon and Nosema genera. Thus, the previously missing U1 small nuclear RNA (snRNA) and small nucleolar RNAs (snoRNAs) targeting only the LSU rRNA were highlighted and were further validated using 5' and 3'RACE-PCR experiments. Overall, the 15 ncRNAs that were found shared between Encephalitozoon and Nosema spp. may represent the minimal core set required for parasitic life. Interestingly, the systematic presence of a CCC- or GGG-like motif in 5' of all ncRNA and mRNA gene transcripts regardless of the RNA polymerase involved suggests that the RNA polymerase machineries in microsporidia species could use common factors. Our data provide additional insights in accordance with the simplification processes observed in these reduce genomes and underline the usefulness of sequencing closely related species to help identify highly divergent ncRNAs in these parasites., (© The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.)
- Published
- 2017
- Full Text
- View/download PDF
41. Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet.
- Author
-
Comtet-Marre S, Parisot N, Lepercq P, Chaucheyras-Durand F, Mosoni P, Peyretaillade E, Bayat AR, Shingfield KJ, Peyret P, and Forano E
- Abstract
Ruminants have a unique ability to derive energy from the degradation of plant polysaccharides through the activity of the rumen microbiota. Although this process is well studied in vitro , knowledge gaps remain regarding the relative contribution of the microbiota members and enzymes in vivo . The present study used RNA-sequencing to reveal both the expression of genes encoding carbohydrate-active enzymes (CAZymes) by the rumen microbiota of a lactating dairy cow and the microorganisms forming the fiber-degrading community. Functional analysis identified 12,237 CAZymes, accounting for 1% of the transcripts. The CAZyme profile was dominated by families GH94 (cellobiose-phosphorylase), GH13 (amylase), GH43 and GH10 (hemicellulases), GH9 and GH48 (cellulases), PL11 (pectinase) as well as GH2 and GH3 (oligosaccharidases). Our data support the pivotal role of the most characterized fibrolytic bacteria ( Prevotella, Ruminocccus and Fibrobacter ), and highlight a substantial, although most probably underestimated, contribution of fungi and ciliate protozoa to polysaccharide degradation. Particularly these results may motivate further exploration of the role and the functions of protozoa in the rumen. Moreover, an important part of the fibrolytic bacterial community remains to be characterized since one third of the CAZyme transcripts originated from distantly related strains. These findings are used to highlight limitations of current metatranscriptomics approaches to understand the functional rumen microbial community and opportunities to circumvent them.
- Published
- 2017
- Full Text
- View/download PDF
42. Disruption of phenylalanine hydroxylase reduces adult lifespan and fecundity, and impairs embryonic development in parthenogenetic pea aphids.
- Author
-
Simonet P, Gaget K, Parisot N, Duport G, Rey M, Febvay G, Charles H, Callaerts P, Colella S, and Calevro F
- Subjects
- Animals, Aphids physiology, Gene Expression Regulation, Developmental, Gene Expression Regulation, Enzymologic, Phylogeny, Aphids embryology, Fertility, Longevity, Parthenogenesis, Pisum sativum parasitology, Phenylalanine Hydroxylase genetics
- Abstract
Phenylalanine hydroxylase (PAH) is a key tyrosine-biosynthetic enzyme involved in neurological and melanin-associated physiological processes. Despite extensive investigations in holometabolous insects, a PAH contribution to insect embryonic development has never been demonstrated. Here, we have characterized, for the first time, the PAH gene in a hemimetabolous insect, the aphid Acyrthosiphon pisum. Phylogenetic and sequence analyses confirmed that ApPAH is closely related to metazoan PAH, exhibiting the typical ACT regulatory and catalytic domains. Temporal expression patterns suggest that ApPAH has an important role in aphid developmental physiology, its mRNA levels peaking at the end of embryonic development. We used parental dsApPAH treatment to generate successful knockdown in aphid embryos and to study its developmental role. ApPAH inactivation shortens the adult aphid lifespan and considerably affects fecundity by diminishing the number of nymphs laid and impairing embryonic development, with newborn nymphs exhibiting severe morphological defects. Using single nymph HPLC analyses, we demonstrated a significant tyrosine deficiency and a consistent accumulation of the upstream tyrosine precursor, phenylalanine, in defective nymphs, thus confirming the RNAi-mediated disruption of PAH activity. This study provides first insights into the role of PAH in hemimetabolous insects and demonstrates that this metabolic gene is essential for insect embryonic development.
- Published
- 2016
- Full Text
- View/download PDF
43. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model.
- Author
-
Ribière C, Peyret P, Parisot N, Darcha C, Déchelotte PJ, Barnich N, Peyretaillade E, and Boucher D
- Subjects
- Administration, Oral, Animals, Benzo(a)pyrene administration & dosage, Disease Models, Animal, Dysbiosis etiology, Dysbiosis microbiology, Environmental Exposure, Environmental Pollutants administration & dosage, Feces microbiology, Gastrointestinal Microbiome genetics, Humans, Inflammatory Bowel Diseases etiology, Inflammatory Bowel Diseases microbiology, Inflammatory Bowel Diseases pathology, Intestinal Mucosa microbiology, Intestinal Mucosa pathology, Male, Mice, Mice, Inbred C57BL, Benzo(a)pyrene toxicity, Environmental Pollutants toxicity, Gastrointestinal Microbiome drug effects, Intestinal Mucosa drug effects
- Abstract
Gut microbiota dysbiosis are associated with a wide range of human diseases, including inflammatory bowel diseases. The physiopathology of these diseases has multifactorial aetiology in which environmental factors, particularly pollution could play a crucial role. Among the different pollutants listed, Polycyclic Aromatic Hydrocarbons (PAHs) are subject to increased monitoring due to their wide distribution and high toxicity on Humans. Here, we used 16S rRNA gene sequencing to investigate the impact of benzo[a]pyrene (BaP, most toxic PAH) oral exposure on the faecal and intestinal mucosa-associated bacteria in C57BL/6 mice. Intestinal inflammation was also evaluated by histological observations. BaP oral exposure significantly altered the composition and the abundance of the gut microbiota and led to moderate inflammation in ileal and colonic mucosa. More severe lesions were observed in ileal segment. Shifts in gut microbiota associated with moderate inflammatory signs in intestinal mucosa would suggest the establishment of a pro-inflammatory intestinal environment following BaP oral exposure. Therefore, under conditions of genetic susceptibility and in association with other environmental factors, exposure to this pollutant could trigger and/or accelerate the development of inflammatory pathologies.
- Published
- 2016
- Full Text
- View/download PDF
44. ArthropodaCyc: a CycADS powered collection of BioCyc databases to analyse and compare metabolism of arthropods.
- Author
-
Baa-Puyoulet P, Parisot N, Febvay G, Huerta-Cepas J, Vellozo AF, Gabaldón T, Calevro F, Charles H, and Colella S
- Subjects
- Animals, Molecular Sequence Annotation, Arthropods genetics, Database Management Systems, Databases, Genetic, Internet, Software
- Abstract
Arthropods interact with humans at different levels with highly beneficial roles (e.g. as pollinators), as well as with a negative impact for example as vectors of human or animal diseases, or as agricultural pests. Several arthropod genomes are available at present and many others will be sequenced in the near future in the context of the i5K initiative, offering opportunities for reconstructing, modelling and comparing their metabolic networks. In-depth analysis of these genomic data through metabolism reconstruction is expected to contribute to a better understanding of the biology of arthropods, thereby allowing the development of new strategies to control harmful species. In this context, we present here ArthropodaCyc, a dedicated BioCyc collection of databases using the Cyc annotation database system (CycADS), allowing researchers to perform reliable metabolism comparisons of fully sequenced arthropods genomes. Since the annotation quality is a key factor when performing such global genome comparisons, all proteins from the genomes included in the ArthropodaCyc database were re-annotated using several annotation tools and orthology information. All functional/domain annotation results and their sources were integrated in the databases for user access. Currently, ArthropodaCyc offers a centralized repository of metabolic pathways, protein sequence domains, Gene Ontology annotations as well as evolutionary information for 28 arthropod species. Such database collection allows metabolism analysis both with integrated tools and through extraction of data in formats suitable for systems biology studies.Database URL: http://arthropodacyc.cycadsys.org/., (© The Author(s) 2016. Published by Oxford University Press.)
- Published
- 2016
- Full Text
- View/download PDF
45. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells.
- Author
-
Guilhen C, Charbonnel N, Parisot N, Gueguen N, Iltis A, Forestier C, and Balestrino D
- Subjects
- Gene Expression Profiling, Gene Expression Regulation, Bacterial, Klebsiella pneumoniae physiology, RNA, Bacterial genetics, Sequence Analysis, RNA, Bacterial Adhesion genetics, Biofilms, Klebsiella pneumoniae genetics, Transcriptome
- Abstract
Background: Surface-associated communities of bacteria, known as biofilms, play a critical role in the persistence and dissemination of bacteria in various environments. Biofilm development is a sequential dynamic process from an initial bacterial adhesion to a three-dimensional structure formation, and a subsequent bacterial dispersion. Transitions between these different modes of growth are governed by complex and partially known molecular pathways., Results: Using RNA-seq technology, our work provided an exhaustive overview of the transcriptomic behavior of the opportunistic pathogen Klebsiella pneumoniae derived from free-living, biofilm and biofilm-dispersed states. For each of these conditions, the combined use of Z-scores and principal component analysis provided a clear illustration of distinct expression profiles. In particular, biofilm-dispersed cells appeared as a unique stage in the bacteria lifecycle, different from both planktonic and sessile states. The K-means cluster analysis showed clusters of Coding DNA Sequences (CDS) and non-coding RNA (ncRNA) genes differentially transcribed between conditions. Most of them included dominant functional classes, emphasizing the transcriptional changes occurring in the course of K. pneumoniae lifestyle transitions. Furthermore, analysis of the whole transcriptome allowed the selection of an overall of 40 transcriptional signature genes for the five bacterial physiological states., Conclusions: This transcriptional study provides additional clues to understand the key molecular mechanisms involved in the transition between biofilm and the free-living lifestyles, which represents an important challenge to control both beneficial and harmful biofilm. Moreover, this exhaustive study identified physiological state specific transcriptomic reference dataset useful for the research community.
- Published
- 2016
- Full Text
- View/download PDF
46. Distribution of Dehalococcoidia in the Anaerobic Deep Water of a Remote Meromictic Crater Lake and Detection of Dehalococcoidia-Derived Reductive Dehalogenase Homologous Genes.
- Author
-
Biderre-Petit C, Dugat-Bony E, Mege M, Parisot N, Adrian L, Moné A, Denonfoux J, Peyretaillade E, Debroas D, Boucher D, and Peyret P
- Subjects
- Bacterial Proteins metabolism, Chloroflexi classification, Chloroflexi enzymology, Genome, Bacterial, Oxidoreductases metabolism, Oxygen metabolism, Phylogeny, RNA, Ribosomal, 16S chemistry, RNA, Ribosomal, 16S classification, RNA, Ribosomal, 16S genetics, Real-Time Polymerase Chain Reaction, Sequence Analysis, DNA, Temperature, Bacterial Proteins genetics, Chloroflexi genetics, Lakes microbiology, Oxidoreductases genetics
- Abstract
Here we describe the natural occurrence of bacteria of the class Dehalococcoidia (DEH) and their diversity at different depths in anoxic waters of a remote meromictic lake (Lake Pavin) using 16S rRNA gene amplicon sequencing and quantitative PCR. Detected DEH are phylogenetically diverse and the majority of 16S rRNA sequences have less than 91% similarity to previously isolated DEH 16S rRNA sequences. To predict the metabolic potential of detected DEH subgroups and to assess if they encode genes to transform halogenated compounds, we enriched DEH-affiliated genomic DNA by using a specific-gene capture method and probes against DEH-derived 16S rRNA genes, reductive dehalogenase genes and known insertion sequences. Two reductive dehalogenase homologous sequences were identified from DEH-enriched genomic DNA, and marker genes in the direct vicinity confirm that gene fragments were derived from DEH. The low sequence similarity with known reductive dehalogenase genes suggests yet-unknown catabolic potential in the anoxic zone of Lake Pavin.
- Published
- 2016
- Full Text
- View/download PDF
47. Targeted Gene Capture by Hybridization to Illuminate Ecosystem Functioning.
- Author
-
Ribière C, Beugnot R, Parisot N, Gasc C, Defois C, Denonfoux J, Boucher D, Peyretaillade E, and Peyret P
- Subjects
- Biomarkers, Computational Biology, Ecosystem, Metagenome genetics, Nucleic Acid Hybridization methods, RNA Probes, DNA, Bacterial genetics, High-Throughput Nucleotide Sequencing methods, Metagenomics methods, Sequence Analysis, DNA methods
- Abstract
Microbial communities are extremely abundant and diverse on earth surface and play key role in the ecosystem functioning. Thus, although next-generation sequencing (NGS) technologies have greatly improved knowledge on microbial diversity, it is necessary to reduce the biological complexity to better understand the microorganism functions. To achieve this goal, we describe a promising approach, based on the solution hybrid selection (SHS) method for the selective enrichment in a target-specific biomarker from metagenomic and metatranscriptomic samples. The success of this method strongly depends on the determination of sensitive, specific, and explorative probes to assess the complete targeted gene repertoire. Indeed, in this method, RNA probes were used to capture large DNA or RNA fragments harboring biomarkers of interest that potentially allow to link structure and function of communities of interest.
- Published
- 2016
- Full Text
- View/download PDF
48. Probe Design Strategies for Oligonucleotide Microarrays.
- Author
-
Parisot N, Peyretaillade E, Dugat-Bony E, Denonfoux J, Mahul A, and Peyret P
- Subjects
- Proteins genetics, Algorithms, Oligonucleotide Array Sequence Analysis methods, Oligonucleotide Probes genetics
- Abstract
Oligonucleotide microarrays have been widely used for gene detection and/or quantification of gene expression in various samples ranging from a single organism to a complex microbial assemblage. The success of a microarray experiment, however, strongly relies on the quality of designed probes. Consequently, probe design is of critical importance and therefore multiple parameters should be considered for each probe in order to ensure high specificity, sensitivity, and uniformity as well as potentially quantitative power. Moreover, to assess the complete gene repertoire of complex biological samples such as those studied in the field of microbial ecology, exploratory probe design strategies must be also implemented to target not-yet-described sequences. To design such probes, two algorithms, KASpOD and HiSpOD, have been developed and they are available via two user-friendly web services. Here, we describe the use of this software necessary for the design of highly effective probes especially in the context of microbial oligonucleotide microarrays by taking into account all the crucial parameters.
- Published
- 2016
- Full Text
- View/download PDF
49. Capturing prokaryotic dark matter genomes.
- Author
-
Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, and Peyret P
- Subjects
- Archaea genetics, Bacteria genetics, Ecosystem, High-Throughput Nucleotide Sequencing, Metagenomics methods, Prokaryotic Cells, Single-Cell Analysis, Archaea metabolism, Bacteria metabolism, Genome, Archaeal, Genome, Bacterial
- Abstract
Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches., (Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
50. Weevil endosymbiont dynamics is associated with a clamping of immunity.
- Author
-
Masson F, Moné Y, Vigneron A, Vallier A, Parisot N, Vincent-Monégat C, Balmand S, Carpentier MC, Zaidman-Rémy A, and Heddi A
- Subjects
- Animals, Apoptosis genetics, Autophagy genetics, Bacteria genetics, Base Sequence, Digestive System microbiology, High-Throughput Nucleotide Sequencing, Insect Proteins biosynthesis, Larva growth & development, Larva immunology, Larva microbiology, Weevils growth & development, Weevils microbiology, Insect Proteins genetics, Symbiosis genetics, Weevils genetics, Weevils immunology
- Abstract
Background: Insects subsisting on nutritionally unbalanced diets have evolved long-term mutualistic relationships with intracellular symbiotic bacteria (endosymbionts). The endosymbiont population load undergoes changes along with insect development. In the cereal weevil Sitophilus oryzae, the midgut endosymbionts Sodalis pierantonius drastically multiply following adult metamorphosis and rapidly decline until total elimination when the insect achieves its cuticle synthesis. Whilst symbiont load was shown to timely meet insect metabolic needs, little is known about the host molecular and immune processes underlying this dynamics., Methods: We performed RNA sequencing analysis on weevil midguts at three representative phases of the endosymbiont dynamics (i.e. increase, climax and decrease). To screen genes which transcriptional changes are specifically related to symbiont dynamics and not to the intrinsic development of the midgut, we further have monitored by RT-qPCR sixteen gene transcript levels in symbiotic and artificially non-symbiotic (aposymbiotic) weevils. We also localized the endosymbionts during the elimination process by fluorescence microscopy., Results: Functional analysis of the host differentially expressed genes by RNA sequencing showed that the main transcriptional changes occur during endosymbiont growth phase and affect cell proliferation, apoptosis, autophagy, phagocytosis, and metabolism of fatty acids and nucleic acids. We also showed that symbiont dynamics alters the expression of several genes involved in insect development. Our results strengthened the implication of apoptosis and autophagy processes in symbiont elimination and recycling. Remarkably, apart from the coleoptericin A that is known to target endosymbionts and controls their division and location, no gene coding antimicrobial peptide was upregulated during the symbiont growth and elimination phases., Conclusion: We show that endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development. It also triggers cell apoptosis, autophagy and gut epithelial cell swelling and delamination. Strikingly, immunity is repressed during the whole process, presumably avoiding tissue inflammation and allowing insects to optimize nutrient recovery from recycled endosymbiont.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.