1. The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells
- Author
-
Parasido, Erika, Avetian, George S, Naeem, Aisha, Graham, Garrett, Pishvaian, Michael, Glasgow, Eric, Mudambi, Shaila, Lee, Yichien, Ihemelandu, Chukwuemeka, Choudhry, Muhammad, Peran, Ivana, Banerjee, Partha P, Avantaggiati, Maria Laura, Bryant, Kirsten, Baldelli, Elisa, Pierobon, Mariaelena, Liotta, Lance, Petricoin, Emanuel, Fricke, Stanley T, Sebastian, Aimy, Cozzitorto, Joseph, Loots, Gabriela G, Kumar, Deepak, Byers, Stephen, Londin, Eric, DiFeo, Analisa, Narla, Goutham, Winter, Jordan, Brody, Jonathan R, Rodriguez, Olga, and Albanese, Chris
- Subjects
Cancer ,Pancreatic Cancer ,Digestive Diseases ,Orphan Drug ,Rare Diseases ,Development of treatments and therapeutic interventions ,5.1 Pharmaceuticals ,Aged ,Aged ,80 and over ,Albumins ,Animals ,Carcinoma ,Pancreatic Ductal ,Drug Resistance ,Neoplasm ,Female ,Gene Expression Regulation ,Neoplastic ,Humans ,Male ,Mice ,Neoplasm Transplantation ,Paclitaxel ,Pancreatic Neoplasms ,Primary Cell Culture ,Proto-Oncogene Proteins c-myc ,Tumor Cells ,Cultured ,Up-Regulation ,Zebrafish ,Oncology and Carcinogenesis ,Developmental Biology ,Oncology & Carcinogenesis - Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis.
- Published
- 2019