1. Assessing the Impact of Chrysene-Sorbed Polystyrene Microplastics on Different Life Stages of the Mediterranean Mussel Mytilus galloprovincialis
- Author
-
Marco Capolupo, Alessandro Girolamo Rombolà, Sadia Sharmin, Paola Valbonesi, Daniele Fabbri, and Elena Fabbri
- Subjects
POPs ,chemical sorption ,bivalves ,embryotoxicity ,biomarkers ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The sorption of organic pollutants to marine plastic litter may pose risks to marine organisms, notably for what concerns their intake and transfer through microplastic (MP) ingestion. This study investigated the effects of polystyrene MP loaded with chrysene (CHR) on early-stage and physiological endpoints measured in the Mediterranean mussel Mytilus galloprovincialis. The same concentrations of virgin microplastics (MP) and MP loaded with 10.8 µg CHR/mg (CHR-MP) were administered to mussel gametes/embryos (25 × 103 items/mL) and adults (5⋅× 103 items/L); further treatments included 0.1 mg/L of freely dissolved CHR and a second CHR concentration corresponding to that vehiculated by CHR-MP during exposure (3.78 µg/L and 0.73 ng/L for gamete/embryos and adults, respectively). None of the treatments affected gamete fertilization, while 0.1 mg/L CHR induced embryotoxicity. In adults, CHR-MP and MP similarly affected lysosomal membrane stability and neutral lipids and induced slight effects on oxidative stress endpoints. CHR affected tested endpoints only at 0.1 mg/L, with lysosomal, oxidative stress and neurotoxicity biomarkers generally showing greater alterations than those induced by CHR-MP and MP. This study shows that the CHR sorption on MP does not alter the impact of virgin MP on mussels and may pose limited risks compared to other routes of exposure.
- Published
- 2021
- Full Text
- View/download PDF