1. Doppler-free three-photon spectroscopy on narrow-line optical transitions
- Author
-
Panelli, Guglielmo, Burd, Shaun C., Porter, Erik J., and Kasevich, Mark
- Subjects
Physics - Atomic Physics ,Physics - Optics ,Quantum Physics - Abstract
We demonstrate coherent Doppler-free three-photon excitation of the $^{1}S_{0}$$\leftrightarrow$$^{3}P_{0}$ optical clock transition and the $^{1}S_{0}$$\leftrightarrow$$^{3}P_{1}$ intercombination transition in free-space thermal clouds of $^{88}$Sr atoms. By appropriate orientation of the wavevectors of three lasers incident on the atoms, the first-order Doppler shift can be eliminated for all velocity classes. Three-photon excitation of the $^{1}S_{0}$$\leftrightarrow$$^{3}P_{1}$ transition enables high-contrast Ramsey spectroscopy with interrogation times comparable to the 21$\mu$s natural lifetime using a single near-resonant laser source. Three-photon spectroscopy on the $^{1}S_{0}$$\leftrightarrow$$^{3}P_{0}$ clock transition, using only laser frequencies nearly resonant with the $^{1}S_{0}$$\leftrightarrow$$^{3}P_{0}$ and $^{1}S_{0}$$\leftrightarrow$$^{3}P_{1}$ transitions, enables a reduction in Doppler broadening by two orders of magnitude and a corresponding $\sim470$Hz linewidth without a confining potential.
- Published
- 2024