61 results on '"Palmeirim, I."'
Search Results
2. Improving cultural competence in medical curricula of Algarve University to reduce health disparities
- Author
-
Pinto de Oliveiraa, A, primary, Nunes, S, additional, Marreiros, A, additional, and Palmeirim, I, additional
- Published
- 2020
- Full Text
- View/download PDF
3. Genomics of zebrafish hoxba and hoxbb loci
- Author
-
Fundação para a Ciência e a Tecnologia (Portugal), Monteiro, A. S., Freitas, Renata, Palmeirim, I., Fundação para a Ciência e a Tecnologia (Portugal), Monteiro, A. S., Freitas, Renata, and Palmeirim, I.
- Published
- 2014
4. Genomics of zebrafishhoxbaandhoxbbloci
- Author
-
Monteiro, A. S., primary, Freitas, R., additional, and Palmeirim, I., additional
- Published
- 2014
- Full Text
- View/download PDF
5. Head-tail patterning of the vertebrate embryo: one, two or many unresolved problems?
- Author
-
Stern, C. D., Charite, J., Deschamps, J., Duboule, D., Durston, A. J., Kmita, M., Nicolas, J. F., Palmeirim, I., Smith, J. C., Wolpert, L., Stern, C. D., Charite, J., Deschamps, J., Duboule, D., Durston, A. J., Kmita, M., Nicolas, J. F., Palmeirim, I., Smith, J. C., and Wolpert, L.
- Abstract
When, where and how is the head-tail axis of the embryo set up during development? These are such fundamental and intensely studied questions that one might expect them to have been answered long ago. Not so; we still understand very little about the cellular or molecular mechanisms that lead to the orderly arrangement of body elements along the head-tail axis in vertebrates. In this paper, we outline some of the major outstanding problems and controversies and try to identify some reasons why it has been so difficult to resolve this important issue
- Published
- 2008
- Full Text
- View/download PDF
6. Interrelationship and modularity of notochord and somites: a comparative view on zebrafish and chicken vertebral body development
- Author
-
de Azevedo, T. P., primary, Witten, P. E., additional, Huysseune, A., additional, Bensimon-Brito, A., additional, Winkler, C., additional, To, T. T., additional, and Palmeirim, I., additional
- Published
- 2012
- Full Text
- View/download PDF
7. Watch-ing out for chick limb development
- Author
-
Pascoal, S., primary and Palmeirim, I., additional
- Published
- 2007
- Full Text
- View/download PDF
8. Notch signalling is required for cyclic expression of the hairy-like gene HES1 in the presomitic mesoderm
- Author
-
Jouve, C., primary, Palmeirim, I., additional, Henrique, D., additional, Beckers, J., additional, Gossler, A., additional, Ish-Horowicz, D., additional, and Pourquie, O., additional
- Published
- 2000
- Full Text
- View/download PDF
9. Genomics of zebrafish hoxba and hoxbb loci.
- Author
-
Monteiro, A. S., Freitas, R., and Palmeirim, I.
- Subjects
ZEBRA danio ,VERTEBRAE abnormality genetics ,HOMEOBOX genes ,DNA-binding protein genetics ,GENETIC code ,GENE expression in fishes ,COLLINEAR reactions ,FISH development - Abstract
The article discusses the genetic aspects of vertebrae in zebrafish. Topics include the significant role of Hox genes in encoding DNA binding proteins, genetic expression observed through spatiotemporal collinearity in a variety of fish development, and detection of conserved non-coding sequences (CNS) in vertebrae.
- Published
- 2014
- Full Text
- View/download PDF
10. Une horloge moléculaire liée à la segmentation des vertébrés.
- Author
-
Pourquié, O, primary and Palmeirim, I, additional
- Published
- 1998
- Full Text
- View/download PDF
11. Evidence for medial/lateral specification and positional information within the presomitic mesoderm.
- Author
-
Freitas, C, Rodrigues, S, Charrier, J B, Teillet, M A, and Palmeirim, I
- Abstract
In the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory. The analysis of this expression pattern, correlated with a quail/chick fate-map, identifies a 'wave' of expression travelling along the future medial/lateral presomitic axis. Further analysis also reveals the existence of a medial/lateral asynchrony of expression at the level of presomitic mesoderm. This work suggests that the molecular clock is providing cellular positional information not only along the anterior/posterior but also along the medial/lateral presomitic axis. Finally, by using an in vitro culture system, we show that the information for morphological somite formation and molecular segmentation is segregated within the medial/lateral presomitic axis. Medial presomitic cells are able to form somites and express segmentation markers in the absence of lateral presomitic cells. By contrast, and surprisingly, lateral presomitic cells that are deprived of their medial counterparts are not able to organise themselves into somites and lose the expression of genes known to be important for vertebrate segmentation, such as Delta-1, Notch-1, paraxis, hairy1, hairy2 and lunatic fringe.
- Published
- 2001
12. The impact of alternative science education methodologies on the motivation and acquisition of scientific concepts
- Author
-
Azevedo, Maria Manuel, Fonseca, Fernando, Andrade, Raquel P., Palmeirim, I., and Universidade do Minho
- Subjects
Research experiences ,Laboratory science ,Alternative science education ,Extra-curricular activities ,Middle school sciences - Abstract
Fully aware of the increasing importance of active and experimental learning, this study has been conducted in Portugal between 2007 and 2008 and was the first of this kind to ever be conducted in this country. Thirty eight students of the school E.B. 2, 3 D. Maria II (middle school) participated in the extra-curricular activity entitled “Scientists for a Day”, previous developed by the Life and Health Science Research Institute/School of Health Science (ICVS/ECS), University of Minho. This activity realized in the School E.B. 2, 3 D. Maria II and organized by teachers of the same School consisted in a set of laboratory activities subdivided into four experimental stations, namely: 1st Station – “Extracting banana DNA”; 2nd Station – “Acid/Base”, 3rd Station – “Observation of chicken embryos” and 4th Station – “Five Senses”. The general objectives of this activity were to stimulate the pleasure of knowledge, encourage critical views, heighten the interest in science, motivate students towards experimental work and demystify the idea of what a Scientist is. In an effort to validate this activity and evaluate what they have learned, the students were asked to answer a questionnaire before and immediately after this activity. In this study we observed a clear correlation between the use of active and experimental learning activities, and an increase in scientific knowledge.
13. Looking for novel physiological regulators of lung development
- Author
-
Silva, Cristina Isabel Nogueira, Pinto, Jorge Correia, Palmeirim, I., and Universidade do Minho
- Subjects
616.24 - Abstract
Tese de doutoramento em Medicina, Pediatric and adult diseases characterized by lung hypoplasia or dysplasia are an epidemiologicalb relevant issue, involving important morbidity and mortality rates. The understanding of the complex process of lung development, regulated by several genetic, chemical and physical determinants, has clinical relevance since it can open new perspectives in the treatment of these lung diseases as well as modulation of lung repair. Regardless of the advanced knowledge of normal lung growth, there are several possible regulators and determinants that need to be investigated. Therefore, the main aim of the present dissertation was to discover novel physiological regulators of normal lung morphogenesis, expecting to contribute for the development of new strategies for lung diseases, namely for fetal lung hypoplasia, in context of congenital diaphragmatic hernia (CDH). Using different laboratorial approaches, namely histological, molecular, and functional studies, the role of glycoprotein 130 (gp130) family of cytokines and renin-angiotensin system (RAS) was evaluated throughout fetal lung development, in rat model of either normal and hypoplastic (the nitrofen-induced CDH model) lung development.. In this thesis, it was demonstrated that interleukin 6 (IL-6) and leukemia-inhibitory factor (LIF) are constitutively expressed during fetal lung development and they have a physiological role on pulmonary branching mechanisms. Indeed, cytokines signaling through gp130 homodimers (IL-6 and IL-11) stimulate lung branching, whereas cytokines acting in a gp130 heterodimer receptor (LIF, oncostatin M) inhibit lung growth. It was also established that there is a local and physiologically active RAS during lung morphogenesis. In fact, all RAS components are constitutively expressed in the lung throughout gestation and angiotensin II (ANG II), the physiologically active peptide of RAS, induces a stimulatory effect on lung branching, mediated by type 1 (AT1) receptor of ANG II, through p44/42 and Akt phosphorylation. After the description of these two new physiological regulators/modulators of fetal lung growth, gp130 family of cytokines and RAS, their role in pulmonary hypoplasia, in the CDH context, were assessed. First of all, it was showed that hypoplastic fetal lung has the intrinsic ability to regulate its growth and to recover from growth retardation through a way that resembles the catch-up growth phenomenon. Moreover, IL-6 might be involved in the mechanisms underlying this phenomenon. Finally, the discovery of RAS as a new regulator of fetal lung growth allowed the establishment of an antagonist of type 2 (AT2) receptor of ANG II (PD-123319) as a putative antenatal therapy for pathologies characterized by fetal lung hypoplasia, such as CDH. In vivo, in nitrofen-induced CDH model, antenatal PD-123319 treatment improved the key determinants of mortality associated with CDH, namely lung hypoplasia and pulmonary hypertension, and also improved lung function and survival, without maternal or fetal deleterious effects. In summary, in this thesis, according to the proposed aims, two novel physiological regulators of fetal lung development were identified: gp130 family of cytokines and local lung RAS. Moreover, we demonstrated that fetal lung has the intrinsic ability to regulate its growth and proposed a model for regulation of correct lung size and growth. Nonetheless, future studies are necessary to clarify this regulatory loop and the mediators (afferent arms, sensors, efferent arms) involved on this hypothetic feedback mechanism of compensatory growth. Finally, we established that selective inhibition of AT2 receptor is a putative antenatal therapy for pathologies characterized by lung hypoplasia, such as CDH, which open perspectives for future pre-clinical studies., As doenças pulmonares pediátricas ou do adulto, que cursam com hipoplasia ou displasia pulmonar, associam-se a elevadas taxas de morbilidade e mortalidade. A compreensão dos mecanismos complexos do desenvolvimento pulmonar, regulados por determinantes genéticos, químicos e mecânicos, apresenta relevância clínica ao permitir o desenho de novas abordagens terapêuticas que mimetizem o normal crescimento e maturação pulmonares, bem como a regeneração pulmonar. Nos últimos anos, o conhecimento sobre desenvolvimento pulmonar normal muito ter evoluído. Contudo, são vários os fatores de crescimento e reguladores que permanecem por esclarecer. Assim, nesta dissertação investigaram-se novos reguladores fisiológicos da morfogénese pulmonar, procurando contribuir para o desenvolvimento de novas estratégias terapêuticas para as doenças pulmonares, nomeadamente a hipoplasia pulmonar fetal, no contexto da hérnia diafragmática congénita (HDC). No modelo animal do rato, quer em animais controlo quer no modelo de HDC induzida pelo nitrofeno, a função da família das citocinas da glicoproteína 130 (gp130) e do sistema reninaangiotensina (SRA) foi avaliada ao longo do desenvolvimento pulmonar fetal. Diferentes técnicas laboratoriais foram utilizadas, nomeadamente estudos histológicos, moleculares e funcionais. Os nossos resultados demonstraram que a interleucina 6 (IL-6) e o fator inibidor da leucemia (LIF) são constitutivamente expressos ao longo do desenvolvimento pulmonar fetal e desempenham um papel fisiológico nos mecanismos de ramificação pulmonar. Assim, a IL-6 e a IL-11, cujos recetores são homodímeros da gp130, estimulam a ramificação pulmonar. Por sua vez, o LIF, a oncostatina M, que sinalizam via heterodímeros de gp130, inibem o crescimento pulmonar. Para além disso, foi também descrita a presença de um SRA local e fisiologicamente ativo durante a morfogénese pulmonar. Na verdade, todos os componentes do SRA são expressos no pulmão em todas as idades gestacionais estudadas e a angiotensina II (ANG II), o peptídeo fisiologicamente ativo deste sistema, estimula a ramificação pulmonar, via recetor de tipo 1 (AT1) e a fosforilação da p44/42 e Akt. Uma vez descritos estes dois novos reguladores/moduladores do crescimento pulmonar fetal, a família das citocinas da gp130 e o SRA, o seu papel na hipoplasia pulmonar fetal, no contexto da HDC, foi avaliado. Foi possível demonstrar que o pulmão fetal hipoplásico apresenta capacidade intrínseca para regular o seu crescimento e recuperar do atraso de crescimento por um mecanismo similar ao clássico fenómeno de catch-up growth. A IL-6 revelou-se como um dos mediadores envolvidos nos mecanismos subjacentes a este fenómeno. Finalmente, a descoberta do SRA como um novo regulador do crescimento pulmonar fetal permitiu apresentar o PD-123319, um antagonista específico do recetor de tipo 2 da ANG II (AT2), como um potencial alvo terapêutico para patologias caraterizadas por hipoplasia pulmonar fetal, das quais a HDC é um exemplo. No modelo de HDC induzida pelo nitrofeno, in vivo, a administração materna antenatal de PD-123319 melhorou os determinantes chave associados a esta patologia, nomeadamente a hipoplasia e hipertensão pulmonares, e melhorou a função pulmonar e a taxa de sobrevida, sem aparentes efeitos deletérios maternos ou fetais. Em resumo, nesta tese, de acordo com os objetivos inicialmente estabelecidos, foram identificados dois novos reguladores fisiológicos do desenvolvimento pulmonar fetal: a família das citocinas da gp130 e o SRA pulmonar. Foi, também, demonstrado que o pulmão fetal apresenta capacidade intrínseca para regular o seu crescimento e foi proposta a existência de um modelo de regulação do crescimento pulmonar. Contudo, estudos futuros são necessários a fim de se clarificar este hipotético mecanismo de regulação do crescimento e os seus mediadores (vias aferentes, sensor e vias eferentes). Por fim, a apresentação do recetor AT2 como um potencial alvo terapêutico antenatal para patologias caraterizadas por hipoplasia pulmonar, tais como a HDC, promove o desenvolvimento de estudos pré-clínicos futuros.
- Published
- 2012
14. Molecular parallelisms between vertebrate limb development and somitogenesis
- Author
-
Sheeba, Caroline J., Palmeirim, I., Pinto, Jorge Manuel Nunes Correia, and Universidade do Minho
- Subjects
611-013 - Abstract
Tese de doutoramento em Ciências da Saúde, Limbs emerge from the embryo flank as a mass of mesenchymal cells within an ectodermal jacket that will give rise to skeletal elements and connective tissues, structured along the dorsal-ventral (DV), anterior-posterior (AP) and proximal-distal (PD) axes. The apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) are limb signalling centres that drive the establishment of PD and AP axis, respectively (Zeller et al., 2009). Development of all embryo structures requires precise orchestration of cell proliferation and differentiation in both space and time. However, how cells measure time was puzzling until the first evidence for a time counting mechanism was provided by Palmeirim et al. (1997) in chick presomitic mesoderm (PSM). In a decade, the existence of a limb molecular clock by unveiling cyclic hairy2 gene expression in limb chondrogenic precursor cells was demonstrated (Pascoal et al., 2007). The discovery of the limb clock raises the exciting possibility that parallelisms could be established between somitogenesis and limb development. This PhD work has been designed to establish parallelisms between limb and trunk development. In order to do this analysis, first, we have established the existing parallelisms from the available literature and further extended the list by focusing on limb hairy2 oscillation´s biological significance. So as to comprehend the biological significance of hairy2 oscillations, two main approaches have been taken. One is to understand its regulatory pathways; the second is to analyse the functional relevance of hairy2 cycles and to assess the existence of a wavefront in limb. In the light of the first part, we have found the involvement of the two major limb signaling centers and their signaling molecules, the AER/FGFs and the ZPA/SHH in hairy2 regulation. This regulatory network was identified based on in-ovo ablation and bead implantation experiments to overexpress or downregulate signalling molecules in both the hairy2 positive (Posterior positive domain: PPD and Distal Cyclic Domain: DCD) and negative (Anterior and Posterior Negative Domains: AND and PND) limb domains. Analysis on the intracellular pathways by immunoblot revealed that FGF mediated Erk and Akt phosphorylation and SHH mediated modulation of Gli3 activity levels is responsible for this effect. We have further established the difference in the mechanisms employed by the AER/FGFs and ZPA/SHH to regulate distal limb mesenchymal hairy2 expression. The AER-FGFs provide a short-term, short-range instructive signal while, the ZPA-SHH deliver a long-term, long-range permissive signal for limb hairy2 expression. The AER/FGFs were only able to execute their inductive role on hairy2 expression when the tissue is in a ZPA/SHH-created permissive state defined as Gli3-A/Gli3-R≥1. In accordance with the ZPA/SHH reliant posteriot-anterior Gli3-A/Gli3-R ratio gradient, hairy2 is persistently expression in the PPD and absent from the AND. However, in the absence of the inductive AER/FGF signal, SHH cannot induce hairy2 expression suggesting a mutual dependency existing between AER/FGF and ZPA/SHH for limb hairy2 expression regulation. Importantly, we demonstrate that this joint requirement is not a signaling relay but a convergence of both signals at the level of hairy2 expression making hairy2 a readout of AER/FGF and ZPA/SHH signals at both time and space. Additional analysis on the participation of RA and BMP4 signals in limb hairy2 expression suggests RA as a positive regulator and BMP4 as a negative regulator of its expression. Interestingly, the inductive effect of RA-bead is also found to be via Gli3 activity modulation. Finally, we have proposed a model defining the combinations of signals laying down the distinct expression domains of hairy2 in the limb distal mesenchyme. The PPD is defined by high AER/FGF and ZPA/SHH signal mediated Gli3-A/Gli3-R≥1 (higher than 1); the DCD with high AER/FGF and moderate ZPA/SHH derived Gli3-A/Gli3-R≥1 (tending towards 1) and the AND possesses no SHH signal and so Gli3-A/Gli3-R˂1 (less than 1) and high BMP4 acZvity. The functional relevance of cyclic gene expression in limb development/patterning will be assessed by perturbing hairy2 oscillations in limb mesenchymal cells by infecting them with retrovirus carrying either hairy2 gene or hairy2 specific siRNAs. At present we are performing this task and the results are promising. Since hairy2 expression is tightly regulated by the PD patterning AER/FGFs and the AP pattering ZPA/SHH signals, we expect to obtain limb elements displaying both PD and AP defects upon Hairy2 misexpression. Supporting our analysis of molecular parallelisms among somitogenesis and limb development, the existence of a limb wavefront (Differentiation Front: DF) reminiscent to the PSM Determination Front (DetF) has also been evaluated. Experiments aiming to shift the limits of FGF or RA signaling along the PD limb axis is affecting the limb skeletal element size, reinforcing the similarity with somitogenesis. However, the results are not yet conclusive. The parallelisms identified from our work and the ones established from the literature point to enormous resemblance among limb and trunk development at the level of gene expression and their function. This brings great insight on the molecular mechanisms operating in both systems and enriches our understanding of how a pool of undifferentiated cells acquires spatial/temporal information to form a defined structure., Os membros dos embriões vertebrados começam a formar-se à medida que uma massa de células mesenquimais rodeada de tecido epitelial cria uma protuberância nos flancos do embrião, mais tarde originando os elementos ósseos, músculos e tecido conjuntivo, estruturados ao longos dos eixos dorsal-ventral (DV), anterior-posterior (AP) e proximal-distal (PD). A apical ectodermal ridge (AER) e a zone of polarizing activity (ZPA) são centros sinalizadores que orquestram o estabelecimento dos eixos PD e AP do membro embrionário, respectivamente (Zeller et al., 2009). O desenvolvimento de todas as estruturas embrionárias requer uma coordenação espacial e temporal precisa de proliferação e diferenciação celulares. No entanto, não se sabia como medem a células o tempo até se obter a primeira evidência da existência de um relógio molecular embrionário, providenciada por Palmeirim et al. (1997). Uma década depois foi demonstrada a existência de um um relógio molecular no membro através daidentificação da expressão cíclica do gene hairy2 nas células precursoras de condrócitos (Pascoal et al., 2007). A descoberta de um relógio no membro sugere a forte possibilidade de ser possível estabelecer paralelismos moleculares entre o processo de somitogénese e o desenvolvimento do membro. Esta tese de doutoramento foi projectado de modo a estabelecer os paralelismos entre o desenvolvimento do membro e do tronco. Para tal, começamos por estabelecer os paralelismos já existentes na literatura e aumentámos esta lista concentrando a atenção no significado biológico das oscilações de hairy2 no membro. Com o objectivo de melhor compreender o significado biológico das oscilações de hairy2 no membro em desenvolvimento, aplicámos duas abordagens distintas. Primeiramente, procurámos identificar as vias de sinalização envolvidas na regulação da sua expressão. Posteriormente analisámos a relevância funcional do relógio no desenvolvimento do membro. Relativamente ao primeiro objectivo, descrevemos o envolvimento dos centros sinalizadores do membro e as suas moléculas de sinalização, o AER/FGF e o ZPA/SHH, na regulação da expressão de hairy2, utilizando experiências de ablação e/ou de implantação de micro-esferas in ovo com o objectivo de sobre- ou sub-expressar estas as moléculas sinalizadoras nos domínios hairy2 positivo (Posterior positive domain: PPD e Distal Cyclic Domain: DCD) e hairy2 negativo (Anterior and Posterior Negative Domains: AND e PND) do membro. Análise das vias intracelulares por immunoblot mostraram que a fosforilação mediada por Erk e Akt e a modulação dos níveis de actividade de Gli3 por SHH são responsáveis por este efeito. Também descobrimos que os AER/FGFs e o ZPA/SHH utilizam diferentes mecanismos para regular a expressão de hairy2 no membro distal Os resultados obtidos indicam que os AER-FGFs são sinais reguladores da expressão de hairy2 com curto alcance e de curta duração, enquanto o ZPA-SHH é um morfogene com uma acção permissiva de longo alcance e duração sobre hairy2 no membro. A AER/FGFs foram apenas capazes de executar a sua função indutiva quando os tecidos estavam num estado permissivo criado pela ZPA/SHH, definido como Gli3-A/Gli3-R≥1. Em sintonia com o gradiente AP do ratio Gli3-A/Gli3-R≥1, hairy2 apresenta expressão na PPD e não na AND. No entanto, na ausência de sinal indutivo da ERA/FGF, SHH não é capaz de induzir expressão de hairy2, o que sugere uma dependência mútua entre o AER/FGF e o ZPA/SHH na regulação da expressão de hairy2 no membro. De forma importante demonstramos que este necessidade conjunta não é uma passagem de sinal, mas uma convergência de ambos os sinais ao nível da expressão de hairy2, o que torna esta expressão uma leitura dos sinais do AER/FGF e do ZPA/SHH no tempo e no espaço. Uma análise adicional da contribuição dos sinais RA e BMP4 para a expressão de hairy2 sugere que o RA seja um regulador positivo e que o BMP4 seja um regulador negativo. É também de notar de forma interessante que o efeito de uma micro-esfera de RA também pode obter através da modulação da actividade de Gli3. Finalmente, propomos um modelo que define a combinação dos sinais que ditam a expressão de domínios distintos de hairy2 no mesênquima distal do membro. A PPD é definida por altos níveis de Gli3-A/Gli3-R≥1 (maiores que 1) mediados por sinalização da AER/FGF e ZPA/SHH; A DCD por altos níveis de FGF e níveis moderados de Gli3- A/Gli3-R≥1 (tendendo para 1) derivado de ZPA/SHH e a AND por não possuir sinalização SHH e, portanto, Gli3-A/Gli3-R˂1 (menor que 1), para além de alta actividade de BMP4. No sentido de estabelecer a relevância funcional da expressão cíclica de hairy2 no crescimento e padronização do membro em desenvolvimento, propomo-nos a perturbar a expressão de hairy2 nas células distais do mesênquima do membro, recorrendo a infecção por retrovírus, expressando o gene hairy2 ou siRNAs específicos para o gene De momento estamos a realizar esta tarefa e os resultados são promissores. Sabendo que a expressão de hairy2 é fortemente regulada pelos sinais padronizantes da AER/FGF e da ZPA/SHH, esperamos obter elementos do membro com defeitos nos eixos PD e AP após desregulação da expressão de Hairy2. De modo a apoiar a nossa tese da existência de paralelismos entre a somitogénese e o desenvolvimento do membro, avaliámos ainda a existência de uma frente de diferenciação no membro (DF) reminescente da frente de determinação na PSM (DetF). Verificamos também se a alteração dos limites de sinalização de FGFs ou RA ao longo do eixo PD tem efeito sobre o tamanho dos elementos ósseos do membro, reforçando as semelhanças com a somitogénese. No entanto estes resultados não foram até agora conclusivos. Tanto os paralelismos identificados no nosso trabalho, como os recolhidos a partir da literatura apontam para uma grande semelhança entre o desenvolvimento membro e do tronco ao nível funcional e de expressão génica. Todo o trabalho desenvolvido tem como objectivo global a aplicação dos conhecimentos adquiridos no processo da somitogénese para uma melhor compreensão de como as células indiferenciadas do membro em desenvolvimento adquirem informação espacial/temporal e se diferenciam de forma coordenada ao longo do tempo, formando um membro correctamente segmentado e inteiramente funcional.
- Published
- 2011
15. Temporal control of vertebrate embryo development: the role of Sonic Hedgehog in somite segmentation
- Author
-
Resende, Tatiana, Palmeirim, I., Andrade, Raquel P., and Universidade do Minho
- Subjects
591.33 - Abstract
Tese de doutoramento em Ciências da Saúde, All vertebrate species present a segmented articulated body, which is easily observed at the vertebral column level. This segmented nature can be detected quite early during embryonic development with the periodic formation of repeated segments, the somites, along the anteriorposterior embryo body axis. These are formed as blocks of cells that bud off from the rostral tip of the mesenchymal presomitic mesoderm (PSM), which flanks the embryo midline structures, notochord and neural tube. Somites will later originate all segmented structures of the adult body such as vertebrae, intervertebral disks, ribs, the dermis of the back and all skeletal muscles, except those of the head. Somitogenesis occurs in a highly controlled and coordinated fashion and both the number of somites and the periodicity with which they are formed are constant and species specific. In the trunk region of the chick embryo a new pair of somites is formed every 90min. Underlying somite segmentation periodicity is an intrinsic molecular oscillator designated segmentation molecular clock. It was first described in the chick embryo with the demonstration of hairy1 cyclic expression in the PSM with a periodicity of 90min, which corresponds to the time required to form a pair of somites in the chick. It is now known that several genes belonging to distinct signaling pathways such as Notch, Wnt and Fgf present a similar oscillatory behavior. Periodic gene transcription has been described to occur in other vertebrates, other tissues and also in cultured cells. This suggests that the molecular events underlying somitogenesis are highly conserved and that gene oscillations may be a widespread mechanism experienced by many cells and tissue types. A second molecular regulation has been described to account for period somite formation, the wavefront of differentiation. PSM maturation is defined by two opposing gradients with crossregulatory activities: high Fgf/Wnt levels maintain the posterior PSM in an undetermined state and are counteracted by an anterior gradient of Retinoic Acid (RA). The confrontation between these opposing gradients and the molecular clock oscillations regulates somite formation in the anterior PSM. Thus, although the molecular clock operates along the entire PSM, only its anterior third is determined to form somites. Within this PSM region, only the medial-most PSM (M-PSM) possess intrinsic information for both somite formation and molecular clock gene expression, suggesting that M-PSM and lateral PSM (L-PSM) cells are differently committed to segment. Both somite formation and somitogenesis molecular clock are thought to operate independently of the embryo midline structures, notochord and neural tube, and the signaling molecules produced therein, namely Sonic hedgehog (Shh). Shh is the most studied member of the Hedgehog family, which has been implicated in several mechanisms during embryo development but has never been associated with somitogenesis regulation. However, quail/chick grafting experiments have suggested that the midline structures regulate symmetrical bilateral somite formation. Moreover, Shh knock-out mice lack the entire vertebrate column except for five to six ribs. In the present study, we have investigated the role of midline derived Shh in somitogenesis regulation. We show that chick PSM cells express both Shh receptors smoothened and patched, enabling them to respond to notochord-derived Shh. Upon notochord ablation, we observe a delay in somite formation accompanied by an increased period of the molecular clock oscillations. These alterations are recapitulated by Shh chemical inhibitors and rescued by an exogenous Shh source, indicating that Shh is the notochord-derived signal responsible for those perturbations. Segmentation rate recovers over time, accompanied by raldh2 overexpression. Accordingly, external RA supply rescues somite formation. Shh absence leads to an upregulation in the PSM of its downstream effectors, the Glis, in a repressor form and RA is thought to counteract their activity. We have also addressed the role of Shh in the differential specification of M- and LPSM. We show that a diffusible signal travels along the M-L anterior PSM axis and that Shh pathway is responsible for the recruitment of lateral cells by medial ones for timely somite formation. Quail/chick grafts experiments indicate that prospective L-PSM can be re-specified into a medial fate when placed into a PM-PSM position and we suggest that this is also mediated by Shh. A model for Shh activity during PSM specification and somitogenesis, as well as interactions with the diverse pathways operating in the PSM is proposed. Altogether, the results presented here provide concluding evidence that Shh signaling is a component of the intricate molecular machinery responsible for temporal control of somite formation, implicating this molecule in the somitogenesis machinery for the first time., Os vertebrados são animais segmentados, o que é evidenciado cedo no desenvolvimento embrionário com o aparecimento de estruturas metaméricas, os sómitos, ao longo do eixo anteriorposterior do embrião. Estes formam-se periodicamente como blocos de células a partir da parte rostral da mesoderme pré-somítica (MPS), que surge como duas bandas de tecido mesenquimatoso a ladear as estruturas axiais do embrião, a notocorda e o tubo neural. Os sómitos originam todas as estruturas segmentadas presentes no animal adulto: vértebras, discos intervertebrais, costelas, a derme das costas e todos os músculos esqueléticos do tronco e membros. A somitogénese é um processo coordenado e tanto o número total de sómitos como o tempo necessário para a formação de cada par é constante e específico de cada espécie. Na região do tronco da galinha, um novo par de sómitos é formado a cada 90min. A regular a surpreendente periodicidade da formação de sómitos está o relógio molecular da segmentação, que foi primeiramente descrito em galinha aquando da observação de que o gene hairy1 apresenta um padrão de expressão cíclico. Este tem uma periodicidade de 90min, o que corresponde ao tempo necessário para se formar um novo par de sómitos na galinha. Actualmente sabe-se que diversos genes pertencentes a vias de sinalização como Notch, Wnt e Fgf apresentam também comportamento oscilatório. Esta transcrição periódica foi igualmente descrita noutros vertebrados, noutros tecidos e em linhas celulares, sugerindo que os mecanismos moleculares subjacentes à somitogénese são conservados e que este comportamento oscilatório pode ser um evento generalizado, ocorrendo em diferentes células e tecidos. A formação periódica de sómitos é também regulada por uma frente de maturação observada na MPS e definida por dois gradientes opostos: a MPS posterior é mantida num estado indiferenciado por elevados níveis de Fgf/Wnt, que são contrapostos por um gradiente anterior de ácido retinóico (AR). O confronto entre este gradiente de maturação e as oscilações do relógio regulam a formação de sómitos na MPS anterior. Deste modo, apesar de o relógio da somitogénese estar activo em toda a MPS, apenas a sua porção anterior está determinada para segmentar. Nesta região, verifou-se também que apenas a porção mais mediana da MPS (M-MPS) contém informação intrínseca para a formação de sómitos e a expressão de genes do relógio, o que sugere que a MPS-M e a MPS lateral (MPS-L) são diferentes no que diz respeito à sua capacidade de segmentação. Considera-se que tanto a formação de sómitos como o relógio molecular são processos independentes das estruturas axiais do embrião, a notocorda e o tubo neural, e das moléculas sinalizadoras aí produzidas, nomeadamente Sonic hedgehog (Shh). Esta faz parte da família de proteínas Hedgehog envolvida na regulação de diversos processos embrionários, mas que nunca foi implicada na somitogénese. Contudo, experiências usando quimeras codorniz/galinha indicam que as estruturas axiais regulam a formação bilateral e simétrica dos sómitos. Na verdade, nos ratinhos mutantes para Shh a coluna vertebral está ausente, apresentando apenas cinco a seis costelas. Com este trabalho pretendeu-se estudar o papel de Shh proveniente das estruturas axiais na regulação da somitogénese. A análise da expressão dos receptores de Shh smoothened e patched indica que a MPS está apta para responder à sinalização de Shh vinda da notocorda. Após remoção da notocorda, verificou-se um atraso na formação periódica de sómitos, que foi acompanhado por um aumento na periodicidade das oscilações moleculares. Foi possível recapitular estas alterações usando inibidores de Shh e restaurá-las com a adição de Shh, sugerindo que esta molécula é responsável pelas perturbações observadas após ablação da notocorda. Verifica-se que a periodicidade de formação de sómitos é recuperada ao longo do tempo, ao mesmo tempo que se observa uma sobre-expressão de raldh2. De facto, a adição de AR exógeno permite a recuperação da formação de sómitos. Na ausência de Shh, há um aumento da expressão na PSM dos seus efectores moleculares, os Glis, na sua forma repressora e pensa-se que o AR inibe a sua actividade. O papel de Shh na especificação da MPS M e L foi também avaliado. Verificámos a existência de um sinal difusível que percorre a MPS anterior ao longo do seu eixo M-L e mostramos que Shh é responsável pelo recrutamento de células laterais da MPS para integrar o sómito em formação. Para além disso, o uso de quimeras codorniz/galinha permitiu verificar que o território L da MPS prospectiva adquire um destino mediano quando posicionado na região M prospectiva, o que provavelmente se deve também a Shh. Apresentamos um modelo explicativo da actividade de Shh durante a especificação da MPS e na somitogénese e também da sua interacção com outras moléculas sinalizadoras que actuam na MPS. Os resultados aqui apresentados levam-nos a concluir que Shh é um componente adicional da complexa rede molecular subjacente ao controlo temporal da formação de sómitos, implicando esta via de sinalização na somitogénese pela primeira vez., Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/27796/2006, PTDC/SAUOBD/099758/2008, PTDC/SAU-OBD/105111/2008)
- Published
- 2011
16. Novos aspectos na coordenação do desenvolvimento do membro dos vertebrados
- Author
-
Pascoal, Susana, Palmeirim, I., and Universidade do Minho
- Subjects
611.7 - Abstract
Limb development requires precise orchestration of cell proliferation and differentiation in both time and space. Chick limb skeletal elements are laid down as cartilaginous primordia with the same initial size and grow differentially in a proximaldistal (P-D) sequence giving rise to seven skeletal compartments. Two models seek to explain cell fate specification along the P-D limb axis. Although fundamentally different, both models imply the existence of a limb bud distal zone where cells reside until they reach the time to differentiate - progress zone model -, or to expand - early specification model. However, how these cells measure time remains unknown. In 1997, the identification of the somitogenesis molecular clock brought new insight into how embryonic cells measure time. Another interesting discovery made in the somitogenesis system is the observation of a maturation wavefront. When this maturation wavefront is experimentally shifted anteriorly by placing an Fibroblast Growth Factor (FGF)8-coated bead in the mid-presomitic mesoderm (PSM), smaller somites are formed. In the work developed during the course of this PhD thesis, we analysed the expression of the somitogenesis molecular clock components hairy1 and hairy2 during chick forelimb development. We provide the first evidence for a molecular clock operating during limb outgrowth and patterning by showing that the expression of the somitogenesis clock component hairy2 cycles in limb chondrogenic precursor cells with a 6 hour periodicity. We determined the time period required to form an autopod skeletal limb element and propose that the forelimb second phalanx takes 12 hours to be formed, suggesting that an autopod limb skeletal element is formed by cells with “n” and “n+1” hairy2 expression cycles. In analogy to the somitogenesis maturation wavefront, we also hypothesise the existence of a wavefront that could be travelling in limb bud distal mesenchyme. Since FGF8 protein and fgf8 mRNA expressed in the Apical Ectodermal Ridge (AER) is activating MAPK phosphatase 3 (mkp3) expression in the distal limb mesenchyme, we have characterized the expression pattern of this gene and found that mkp3 presents a graded distribution of its transcripts in distal limb bud mesenchyme. We also analysed the expression pattern of intronic mkp3 probe and propose that mkp3 in limb distal mesenchyme acts in a similar way to fgf8 in the PSM. Furthermore, similarly to what occurs during somitogenesis, shorter limb elements are obtained when mkp3 expression under influence of FGF8 is extended proximally. We also demonstrate that AER-derived FGF8 signalling positively regulates hairy2 expression in the distal limb mesenchyme. The work performed in this thesis proposes that somitogenesis and limb bud are two parallel systems. Both have a zone where cells are maintained in an undifferentiated state (PSM and distal limb mesenchyme). In both these zones a molecular clock is operating regulating the periodicity of structure formation. We also suggest that these zones are maintained undifferentiated by the FGF/ Wingless int (WNT) signalling pathways that control the size of the elements formed. Recently, Mitogen Activated Protein Kinase/ Extracellular signal-Regulated Kinase (MAPK/ERK) pathway has been implicated in this process. We moreover propose that retinoic acid (RA) and FGF have mutually inhibitory roles in limb bud development, similarly to what occurs during somitogenesis, playing a function in allocating a certain number of cells to the initiation of the chondrogenic differentiation program, resulting in the regulation of element size. Until now, all studies regarding cyclic gene expression during development have focused exclusively on somitogenesis. However, time control is absolutely required during all embryonic development and may even be considered the fourth developmental dimension. The studies performed in this thesis suggest that temporal control exerted by cyclic gene expression can be a widespread mechanism providing cellular temporal information during vertebrate embryonic development, not being an exclusive propriety of PSM cells, as previously thought., O desenvolvimento dos membros dos vertebrados envolve uma regulação temporal e espacial estrita, quer da proliferação, quer da diferenciação celulares. As células precursoras dos elementos esqueléticos que formam o membro são dispostas sequencialmente ao longo do eixo proximal-distal (P-D). Na asa da galinha, estes elementos esqueléticos são formados com o mesmo tamanho inicial, crescendo depois diferencialmente e dando origem a sete compartimentos esqueléticos. Existem dois modelos que tentam explicar a especificação dos destinos celulares ao longo do eixo PD do membro dos vertebrados. Embora essencialmente diferentes, ambos postulam a existência de uma zona distal no membro onde as células residem até chegar o tempo de diferenciarem – modelo da zona de progresso - , ou de expandirem – modelo da especificação precoce. Contudo, continua ainda por determinar a forma como estas células adquirem a noção de tempo. Em 1997, a identificação de um relógio molecular ligado ao processo da somitogénese proporcionou novos conhecimentos na forma de como é que as células adquirem a noção de tempo. Outra descoberta interessante realizada no processo da somitogénese foi a observação de uma “wavefront” de maturação. Quando esta “wavefront” de maturação é deslocada anteriormente através da introdução de esferas embebidas em proteína Fibroblast Growth Factor (FGF)8 na região mediana da mesoderme presomítica (MPS), formam-se sómitos mais pequenos. Os estudos realizados durante o curso desta tese de doutoramento, permitiramnos mostrar pela primeira vez a existência de um relógio molecular que actua durante o desenvolvimento do membro superior do embrião de galinha. Experiências realizadas nesse sentido permitiram-nos estudar o padrão de expressão dos componentes do relógio molecular da somitogénese, hairy1 e hairy2 durante o desenvolvimento do membro superior da galinha e observar que um dos componentes do relógio, o gene hairy2 apresenta ciclos de expressão com uma periodicidade de 6 horas nas células percursoras condrogénicas do membro. Foram realizados estudos para determinar o período de tempo necessário para a formação de um elemento esquelético do membro, e propomos que cada falange é formada em 12 horas, sugerindo que um elemento esquelético do membro é formado por células com “n” e “n+1” ciclos de expressão do gene hairy2. Em analogia com a “wavefront” descrita no modelo da somitogénese, sugerimos que um processo semelhante possa estar a ocorrer no mesênquima distal do membro dos vertebrados. Devido à expressão da proteína de FGF8 e do RNAm de fgf8 na Apical Ectodermal Ridge (AER) activar a expressão de MAPK phosphatase 3 (mkp3) no mesênquima distal do membro, fomos caracterizar o padrão de expressão deste gene e observámos que existe um gradiente de expressão de mkp3 no mesênquima distal do membro. Analisamos também o padrão de expressão obtido com uma sonda intrónica de mkp3, e sugerimos que mkp3 no mesênquima distal do membro actua de uma maneira semelhante à de fgf8 na MPS. De modo idêntico ao modelo proposto para a somitogénese, demonstramos também que quando a expressão de mkp3 sob a influência de FGF8 é estendida proximalmente, os elementos esqueléticos do membro que se estão a formar nessa altura são menores. Por último, demonstramos que a sinalização de FGF8 proveniente da AER regula positivamente a expressão de hairy2 no mesênquima distal do membro. O trabalho realizado nesta tese sugere a existência de um paralelismo entre o processo da somitogénese e do membro. Ambos apresentam uma zona onde as células são mantidas num estado indiferenciado (MPS e o mesênquima distal do membro) onde está presente o relógio molecular responsável por regular a periodicidade da formação das estruturas. Em ambos os casos, estas zonas são mantidas num estado indiferenciado pelas vias de sinalização FGF/ Wingless int (WNT) que controlam o tamanho dos elementos formados. Recentemente, a via do Mitogen Activated Protein Kinase/ Extracellular signal-Regulated Kinase (MAPK/ERK) também foi implicada neste processo. Outro paralelismo interessante entre estes dois sistemas é o facto do ácido retinóico (AR) e da via de sinalização FGF inibirem-se mutuamente dando origem a que um certo número de células se distribuam para a iniciação do programa de diferenciação condrogénico, resultando na regulação do tamanho dos elementos. Até ao presente momento, todos os estudos relativos à expressão cíclica de genes ao longo do desenvolvimento embrionário, têm-se focado exclusivamente na somitogénese. Porém, o controlo temporal é absolutamente necessário durante todo o desenvolvimento embrionário, podendo mesmo ser considerado uma quarta dimensão do desenvolvimento. Os estudos realizados nesta tese de doutoramento sugerem que o controlo temporal exercido pela expressão cíclica de genes pode ser um mecanismo geral para atribuição de informação temporal celular durante o desenvolvimento embrionário dos vertebrados, e não uma propriedade exclusiva das células da MPS como acreditado até agora., Fundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/8657/2002; POCTI/BCI/42040/2001., Fundo Social Europeu (FSE) - POCTI 2010., Rede Europeia de Excelência, “Cells into Organs” - EU/FP6.
- Published
- 2006
17. Spatial-temporal control of the early stages of somitogenesis in the chick embryo
- Author
-
Rodrigues, Sofia, Palmeirim, I., and Universidade do Minho
- Subjects
577.218 - Abstract
Tese de Doutoramento em Ciências da Saúde, A segmentação é o processo que conduz à formação dos sómitos, estruturas embrionárias metaméricas que se formam na parte mais rostral da mesoderme presomítica (MPS) e que estão na base da segmentação do corpo dos vertebrados. Sabese actualmente que o processo de segmentação é controlado por um relógio molecular que opera ao nível das células da MPS e que se manifesta pela transcrição cíclica de vários genes, cujo tempo de ciclo corresponde precisamente ao tempo necessário para a formação de um sómito. O número de ciclos de expressão que ocorrem em cada célula pré-somítica confere-lhe uma informação temporal que se traduz numa informação posicional no eixo antero-posterior do embrião. No curso desta tese de doutoramento, mostramos que ciclos de expressão dos genes do relógio estão já a decorrer nas células do território somítico prospectivo. Este estudo, realizado em embriões de galinha no estadio de 6 sómitos, também mostrou que as futuras células medianas (Futura Mediana (FM)-MPS) e futuras células laterais (Futura Lateral (FL)-MPS) dos sómitos se encontram em territórios distintos e organizados no eixo antero-posterior da linha primitiva. O facto das oscilações dos genes cíclicos atravessarem estes dois territórios ao longo deste eixo, implica que o relógio da segmentação está a proporcionar uma informação posicional bidimensional (no eixo antero-posterior e no eixo médio-lateral) às celulas da MPS. Notavelmente, bandas oblíquas de expressão dos genes cíclicos foram também observadas na MPS. Experiências de transplantação de tecidos efectuadas no nosso laboratório revelaram que apenas as células do território FM-MPS contêm a informação para segmentar, a qual possivelmente lhes é transmitida pela região imediatamente anterior, denominada fenda mediana (FM). Transplantes heterotópicos e interespecíficos da FM e células FM-MPS entre a galinha e a codorniz permitiram-nos verificar que, de facto, a FM é um importante centro sinalizador, responsável pela instrução das células vizinhas mais caudais no processo de segmentação. Uma outra parte deste trabalho focou-se no estudo dos mecanismos moleculares responsáveis por activar o início do relógio da segmentação durante o desenvolvimento embrionário da galinha. Os nossos resultados mostraram que o relógio da segmentação não é activado por nenhum sinal derivado dos primeiros passos da formação do embrião, e propuseram que o nó de Hensen poderia ser o responsável por iniciar o programa da segmentação. O resultado de uma série de transplantes heterotópicos e isocrónicos do nó de Hensen revelaram que este transmite um sinal que é capaz de não só induzir as oscilações dos genes cíclicos em células cujo destino não era a formação de sómitos, mas também de reiniciar o programa da segmentação nestas células. A parte final desta tese consistiu em estudar as diferenças entre os sómitos mais anteriores e os sómitos mais posteriores do embrião. O facto dos sómitos mais rostrais não originarem estruturas segmentadas e de o fenótipo de várias mutações que afectam a somitogénese não apresentar defeitos ao nível destes sómitos, tem levado à ideia generalizada que os sómitos anteriores são diferentes dos mais posteriores. Uma análise detalhada da expressão de notch1, delta1, hairy1, hairy2, lunatic fringe and hey2 ao nível dos primeiros 10 sómitos mostrou que a sua expressão não é a mesma ao longo do eixo antero-posterior, e que as diferenças observadas não são sempre ao mesmo nível somítico. Por outro lado, a monitorização da formação dos primeiros sómitos in vivo, permitiu-nos concluir que os primeiros 2 sómitos se formam mais rapidamente, e de forma quasi-concomitante, que os sómitos mais posteriores. No seu conjunto, os resultados deste trabalho apontam para a existência de diferenças relevantes entre os sómitos rostrais e caudais no que se refere às suas características moleculares e temporais no embrião de galinha., Segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm (PSM). This process is controlled by a molecular clock operating at the level of the PSM, being evident by the cyclic transcription of several genes. Remarkably, the transcription cycle of these genes is precisely the time required to form one somite. In the course of this PhD thesis it was shown that the molecular clock underlying somite formation already operates in the prospective somitic territory at 6-somite stage embryos. Furthermore, this work demonstrated that at this stage the medial (PM-PSM) and lateral (PL-PSM) prospective PSM cells present clearly segregated territories in the primitive streak. Interestingly, the fact that the oscillations of the cycling genes cross the PL-PSM and PM-PSM territories in a posterior to anterior direction implies that the segmentation clock provides the PSM cells with bidimensional positional information. In aggrement, cross-stripes of the molecular clock genes expression were observed in the PSM. Grafting experiments performed in our laboratory further revealed that only the PM-PSM cells contain the information for segmentation, that is possibly transmitted by the median pit (MP), which is the morphological Hensen’s node at the stage of 6-somites. To test this possibility, we performed heterochronic, heterotopic, interspecific quail-chick MP and PM-PSM grafts and checked for the capacity of the MP region to induce somite formation in an ectopic competent region of a younger host embryo. The analysis of these experiments revealed that in fact, the MP is able to induce the formation of ectopic somites as well as the expression of the cycling genes in induced PSM tissue. Hence, the MP seems to be an important signalling centre detaining the information for segmentation. These findings also propose that the MP is the functional organizer at the stage of 6-somites in chick embryos. Another important subject in the line of this thesis was to uncover the molecular mechanisms underlying the onset of the segmentation clock during chick embryonic development. We showed that the segmentation clock was not activated at the very beginning of embryo formation, since both spontaneous and artificially generated double axis which derive from the same embryonic blastoderm, presented different phases of the expression of the cycling genes in their PSMs. Conversely, the phase of the cycle was always the same when the caudal part of the embryos was joined together. These results led us to verify whether Hensen’s node was responsible for triggering the initiation of the segmentation clock. So, a series of heterotopic interspecific quail-chick Hensen’s node grafts were performed and our results showed that the node is able to induce ectopic PSM tissue and to reinitiate the segmentation clock. The same observation was made when chick node grafts were transplanted to the lateral blastoderm of the same embryo. Taken together these findings revealed that the node emits a signal(s) able to induce the oscillations of the cycling genes in cells that are not fated to become somites and that it also has the capacity to restart the segmentation programme in these cells. In the final part of this thesis we focused on the study of possible differences between the formation of anterior and posterior somites, in the chick embryo. The fact that rostral somites do not give rise to segmented structures and are not disrupted in several somitogenesis-related mutants has led to the generally accepted idea that they are different from caudal somites. In addition, it was reported in zebrafish and mouse that the first somites appear to form faster than more posterior ones. We analysed the expression of notch1, delta1, hairy1, hairy2, lunatic fringe and hey2 at the level of the first 10 somites, and we found that the somitic expression pattern profile is not the same along the anterior-posterior axis and that the differences are not observed at the same somite level. We have additionally designed a time-lapse experiment that allowed us to monitor somite formation in vivo. A detailed analysis of the monitored embryos indicates that the first 2 to 3 somites form faster, almost concomitantly, than the more posterior ones. Thus, we conclude from this work that there are relevant differences in anterior versus posterior somites in what concerns their molecular and temporal characteristics in the chick embryo.
- Published
- 2006
18. Desenvolvimento da crista neural caudal no embrião de galinha
- Author
-
Silva, Liliana Alexandra Osório da, Palmeirim, I., Catala, Martin, and Universidade do Minho
- Subjects
577.2 - Abstract
Tese de Doutoramento em Ciências da Saúde – Ciências Biológicas e Biomédicas / Biologie Moléculaire et Cellulaire du Développement., The neural crest (NC) is a transient population of cells proper to vertebrate embryo that arises from the dorsal aspect of the neural tube (NT). Once specified by a distinct transcriptional program, induced by a combination of different signals emanating from surrounding tissues, NC cells (NCC) delaminate from the neuroepithelium. Then, they migrate into the periphery along stereotypical pathways and get specific localizations where they differentiate into a wide variety of cellular derivatives, according to their anteroposterior (AP) level of origin. For example, only cranial NCC give rise to cartilage and other mesenchymal derivatives, while sensory neurons and glia derive from the cephalic and trunk NC. Melanocytes are also formed in the NC at all the levels of the AP axis. An exception is the caudal-most NC issued from the extreme caudal tip of the NT and formed at embryonic day (E) 4 (HH24) at the level of somites 47 to 53 in the chick embryo. This one is characterized by a lack of neuronal derivatives. NCC issued from the caudal-most region of the NT give rise only to Schwann cells and melanocytes, but they do not have neuronal potential. In order to get insight about the mechanisms underlying this singular feature, we have performed a thorough analysis of the different steps of the NC ontogeny in this particular region as compared to other trunk regions. In the first part of our study, we have demonstrated that similar cellular and molecular mechanisms are operating during specification and delamination of NCC independently of the type of neurulation that leads to formation of the NT. For the first time, ontogeny of secondary NCC, arising at the prospective lumbo-sacral regions, was the subject of such analysis. By focusing our analyses on the caudal-most region of the embryo, we have found that few caudal-most NCC are generated at this region at E5/HH26. This does not seems to be a consequence of a general defect in the specification of this population of cells, taking place soon after full cavitation of the caudal-most NT at E4/HH24, but rather to an impairment of the mechanisms involved in their delamination from the neuroepithelium. In fact, we have ascertained an initial defective acquisition of the mesenchymal phenotype by these pre-migratory NCC that is associated with a perturbed BMP and WNT signaling in the dorsal aspect of the caudal-most NT. A spectacular pattern of apoptosis is also occurring in this region of the NT. Identification of migratory caudal-most NCC at E5/HH26 is coincident with the detection of full EMT in the dorsal aspect of the caudal-most NT. From heterotopic and heterochronic transplantation experiments of either the caudal-most NT or caudal-most somites into a rostral region, we have concluded that the lack of neuronal potential of caudal-most NCC is an intrinsic property of these cells and that somitic environment apparently has a reduced influence in this process. By the ectopic expression of Noggin in the trunk NT, we have reproduced the main features of the caudal-most NCC (scarcity of the cells and absence of neuronal derivatives), suggesting that Bmp4 likely constitutes one of the upstream signals of the mechanisms that finally culminate in the absence of sensory ganglia in this region of the embryo. Furthermore, our results stress out that a tightly coordinated mechanism regulates NCC delamination and subsequent steps of their differentiation, possibly involving a BMP threshold activity. We have finally evaluated the role of Bmp4 and of its target Wnt1 in directing neuronal specification of caudal-most NCC. Increased Bmp4 activity, by both electroporation of Bmp4 or knockdown of Noggin using miRNA, as well as increased Wnt1 activity in the caudal-most NT seems to generate more NCC derived from it. Further studies will be necessary to determine if this increase in the number of NCC is followed by DRG differentiation in the caudal-most region of the embryo. Formation of the caudal-most region of the embryo is coincident with the cessation of the embryonic axial elongation, a tightly regulated event that seems to involve several processes. In such a way, the scarcity of caudal-most NCC and their lack of neuronal derivatives may participate in this event. Therefore, our work about the mechanisms underlying the special features of caudal-most NCC would help to elucidate how AP axis formation stops in the embryo., La crête neurale (CN) est une population de cellules transitoire, propre aux vertébrés qui dérive de la portion dorsale du tube neural (TN). Une fois spécifiées par un programme d’expression génique particulier induit par plusieurs signaux venant des tissus adjacents, les cellules de CN (CCN) effectuent une délamination à partir du neuroépithélium. Bientôt, ces cellules migrent vers la périphérie par des voies stéréotypées jusqu’à des localisations spécifiques où elles se différencient en plusieurs dérivés cellulaires, en fonction de leur niveau d’origine sur l’axe antéro-postérieur (AP). Par exemple, seules les CCN céphaliques donnent naissance à du cartilage ainsi qu’à d’autres dérivés de type mésenchymateux. Par contre, les neurones sensoriels et les cellules gliales du système nerveux périphérique se forment à partir de la CN céphalique et de la CN troncale. Des mélanocytes proviennent de tout le long de l’axe neural. La CN la plus caudale, issue de l’extrémité caudale du TN et formée pendant le 4e jour embryonnaire (E4) au niveau des somites 47 à 53 chez l’embryon de poulet, est caractérisée par l’absence de dérivés neuronaux. Les CCN de cette région ne donnent naissance qu’à des cellules de Schwann et à des mélanocytes. Afin d’élucider les causes de cette absence de dérivés neuronaux, nous avons entrepris une analyse détaillée des différentes étapes de la formation de la CN dans cette région de l’embryon d’oiseau. Nous avons commencé notre travail par une étude générale à propos de la formation de la CN « secondaire » en comparaison avec la CN « primaire ». Malgré des différences morphologiques évidentes dans le mode de formation du TN pendant la neurulation primaire (laquelle s’accomplit par la fermeture dorsale de la plaque neurale au niveau des régions céphalique et cervico-thoracique) et la neurulation secondaire (qui implique la cavitation du cordon médullaire au niveau lumbo-sacro-caudal), des CCN sont produites à partir de ces deux régions de l’axe troncal et elles génèrent des dérivés similaires, comme des mélanocytes, neurones et cellules gliales. Néanmoins, bien que la CN primaire ait été l’objet d’un grand nombre d’études, la CN secondaire a moins attiré l’attention et aucune donnée moléculaire à propos des différents aspects de sa formation n’étaient pas disponibles. C’est pourquoi, nous avons analysé, pendant la neurulation secondaire au niveau du tronc (somites 30 à 43), l’expression d’un grand nombre de molécules connuees pour êtres impliqués dans la spécification et la délamination des CNN primaires troncales. Nous avons effectué notre étude chez l’embryon de poulet aux stades 18 à 20 de Hamburger et Hamilton (1951) (18-20HH), pendant le 3e jour embryonnaire (E3). Nous nous sommes concentrés dans la région postérieure de ces embryons, notamment au niveau du mésoderme présomitique (MPS), des somites épithéliaux (SE) et des somites en début de dissociation (SD). Nous pouvons ainsi suivre les stades successifs de maturation de la CN selon une direction caudorostrale. Nous avons découvert que divers facteurs de transcription impliqués dans la spécification de la CN primaire troncale sont exprimés dans la région dorsale du TN secondaire peu après sa formation (cavitation complète). Des gènes comme Pax3, Pax7 et Snail2 (ex-Slug) sont détectés au niveau de la MPS postérieure alors que d’autres comme Msx1 et Msx2 sont exprimés au niveau de la MPS antérieure. De plus, une fois la spécification de la CN accomplie, des CCN en début de migration sont observées pour la première fois au niveau des 2e-3e derniers somites formés. Cette délamination des NCC secondaires, comme celle des NCC primaires, résulte d’événements cellulaires similaires à ceux d’une transition épithelio-mesenchyme (TEM). Cependant, RhoB, impliqué dans la régulation de ce processus, présente un patron d’expression particulier dans le TN secondaire, où il est accumulé du côté apical des cellules dorsales. Comme cette protéine de la famille GTPase semble entraîner des réorganisations du cytosquelette d’actine, nous avons été conduit à analyser la distribution de F-actine dans ce contexte. Nous avons trouvé que la forme des cellules dorsales du TN secondaire change une fois que l’émigration des CCN a eu lieu, comme le montre la perte d’accumulation de F-actine du côté basal des cellules dorsales du neuroépithelium. En plus, l’adhérence cellulaire est aussi modifiée au cours de la formation des CCN, une fois que les cellules dorsales du TN secondaire expriment Cad6B, Ncadherine et Cad7 d’une façon différentielle et dynamique. Tous ces changements sont aussi accompagnés d’une altération de l’interaction de ces cellules avec la matrice extracellulaire (MEC), comme il a été montré par la re-distribution de la forme activée de l’intégrine β1 au moment de la délamination des CCN. De plus, l’acquisition de motilité par les CCN secondaires coïncide avec une augmentation de l’activité de Bmp4, à la fois par un augmentation de ses transcrits et une diminution de l’expression de son inhibiteur Noggin, et l’expression de novo de Wnt1. Comme dans les régions plus antérieures issues de la neurulation primaire, ces événements sont en rapport avec la maturation des somites adjacents, puisque les premières CCN migratoires sont observées au niveau des SD. Globalement, notre analyse met en évidence pour la première fois les aspects moléculaires des différentes phases de la formation de la CN secondaire. En outre, les mécanismes impliqués dans ces phases semblent identiques tout au long du tronc de l’embryon, indépendamment du type de neurulation qui a amené à la formation du TN. Nous avons ensuite porté notre étude sur la région la plus caudale de l’embryon de poulet, située au niveau des somites 47 à 53 et formée à E4/HH24. Bien qu’une étude précédente ait montré que l’absence de dérivés neuronaux dans cette région ne soit pas due à une absence de CCN à ce niveau, des données moléculaires concernant la génération de ces CCN n’étaient pas disponibles. Ainsi, nous avons commencé par analyser la spécification des CCN les plus caudales. Nous avons observé que, aussi bien les marqueurs précoces (comme Pax3, Pax7 et Msx2), que les gènes spécifiques de la CN (tel que Snail2, FoxD3 et Sox9) sont exprimés dans le TN le plus caudal à E4/HH24, à l’exception de Msx1 qui n’a jamais été détecté. Néanmoins, nous n’avons jamais pu identifier des CCN migratoires à ce stade, même au niveau des somites en cours de différenciation. En effet, il a fallu attendre jusqu’à E5/HH26 pour détecter un nombre très restreint de CCN situées à proximité du TN caudal. De ce fait, un retard entre la spécification (à E4/HH24) et l’émigration (à E5/HH26) des CCN a lieu dans la région la plus caudale de l’embryon, accompagné d’un nombre réduit de cellules migratoires. Nos résultats à propos des phases subséquentes du développement de la CN suggèrent que le « décalage temporel » constaté résulte d’un défaut général dans la délamination des CCN les plus caudales. D’abord, nous avons trouvé que ces cellules n’acquièrent pas un phénotype mésenchymateux complet à E4/HH24. À ce stade, les CCN caudales « pré-migratoires » maintiennent la polarité apico-basale typique des cellules neuroépithéliales et la réorganisation du cytosquelette, par la re-distribution de F-actine, n’a pas lieu. Inversement, nous avons constaté que les propriétés d’adhésion cellulaire ainsi que celles de la MEC ne sont pas compromises. En plus, les voies de signalisation BMP et WNT sont perturbées dans le TN le plus caudal. Nous avons vu que Noggin est toujours exprimé dans la partie dorsale du TN caudal, malgré le fait que les somites adjacents sont déjà en cours de différentiation. Wnt1 n’a jamais été détecté à ce niveau. Néanmoins, quelques CCN arrivent à émigrer du neuroépithélium à E5. En même temps que les défauts de délamination des CCN caudales à E4/HH24, nous avons aussi découvert une apoptose massive tout au long de la moitié dorsale du TN caudal. Très probablement, cette apoptose participe au nombre réduit de CCN détecté dans la région la plus caudale. Un défaut de prolifération cellulaire semble aussi contribuer à cette caractéristique, étant donné que nous avons quantifié une réduction importante dans le pourcentage de cellules en phases S- et Mdu cycle cellulaire dans la région dorsale médiane du TN de E4/HH24 à E5/HH26. Pour juger de l’influence de l’environnement local et particulièrement de celle des somites dans les défauts de délamination des CCN les plus caudales, nous avons entrepris des expériences de transplantations ectopiques en utilisant la technique des chimères caillepoulet. Nous avons transplanté soit le TN caudal, soit les somites caudaux d’un embryon de caille au stade E4/HH24 dans une région plus rostrale d’un embryon de poulet au stade E2/HH11-12. Dans ces nouvelles conditions le TN caudal greffé ne forme pas de ganglions rachidiens (GR). Inversement, les somites caudaux ne bloquent pas la formation de GR à partir des CCN endogènes, bien que les GR qui sont générés alors sont plus petits, mal segmentés et situés plus dorsalement que les GR normaux. Ainsi, l’absence de potentiel neuronal des CCN les plus caudales est une propriété intrinsèque à ces cellules et l’environnement somitique semble avoir peu d’influence dans ce processus. En plus, les résultats que nous avons obtenus dans des expériences d’expression ectopique de Noggin dans le TN du tronc renforcent cette conclusion. Dans cette condition expérimentale, nous avons reproduit les principales caractéristiques du « phénotype » des CCN les plus caudales. En présence d’une faible concentration de Noggin, malgré l’existence de quelques CCN qui délaminent du TN electroporé, ces cellules ne forment pas de GR. Enfin, nous avons continué nos études fonctionnelles par l’évaluation de la contribution relative de Bmp4 et Wnt1 dans la formation de dérivés neuronaux. Pour cela, nous avons entrepris des expériences d’expression ectopique de ces gènes dans le TN caudal. Nous avons initié des électroporations de Bmp4 et de miRNA contre Noggin et Wnt1. Dans toutes ces situations, nous avons augmenté le nombre de CCN généré dans cette région. Cependant, nous n’avons pas encore déterminé si cette augmentation du nombre des cellules est suivie ou non de la génération de dérivés neuronaux dans la région la plus caudale de l’embryon. Notre étude de la formation des CCN secondaires et particulièrement de celles provenant de la région la plus caudale de l’embryon met en évidence, pour la première fois, les mécanismes sous-jacents à la pénurie de CCN ainsi qu’à l’absence des dérivés neuronaux qui caractérisent cette région singulière de l’embryon. Étant donné que la génération de la région la plus caudale coïncide avec la cessation d’élongation axiale de l’embryon, les résultats obtenus par notre étude contribueront à une meilleure compréhension de l’arrêt de la formation de l’axe AP de l’embryon., A crista neural (CN) é uma estrutura embrionária transitória, composta por uma população de células característica dos vertebrados, que se forma a partir da região dorsal do tubo neural (TN). A especificação destas células resulta da expressão de um conjunto particular de genes, induzidos por sinais provenientes dos tecidos adjacentes. Uma vez especificadas, as células da CN (CCN) destacam-se do TN e migram para diversas regiões do embrião, segundo trajectos extremamente precisos. Quando chegam aos seus locais de destino, as CCN diferenciam-se em múltiplos tipos celulares, contribuindo para a formação de diversas estruturas, de acordo com a sua origem no eixo antero-posterior (AP) do embrião. Assim, apenas as CCN da região craniana formam cartilagem e outros derivados mesênquimatos da face, enquanto que os neurónios e as células gliais do sistema nervoso periférico derivam de CCN das regiões craniana e troncal. Os melanócitos formam-se a partir das CCN que migram ao longo de todo o eixo antero-posterior do TN. A CN mais caudal, que no embrião de galinha se forma durante o 4° dia de desenvolvimento embrionário (E4) ao nível dos sómitos 47 a 53, caracteriza-se pela ausência de derivados neuronais. As CCN desta região do embrião só se diferenciam em células de Schwann e melanócitos. Para elucidarmos as causas da ausência de derivados neuronais, fizemos uma análise detalhada das diferentes etapas que conduzem à formação de CCN na região mais caudal do embrião de galinha. Na primeira parte do nosso trabalho, realizamos um estudo comparativo entre a formação da CN “secundária” e a NC “primária”. Apesar das diferenças morfológicas evidentes no mecanismo de formação do TN durante a neurulação primária (em que o tubo neural se forma através da fusão dorsal das extremidades da placa neural, nas regiões craniana e cervico-torácica) e a neurulação secundária (em que o tubo neural se forma por cavitação da corda medular, ao nível lumbo-sacro-caudal), as CCN que se formam em ambas as regiões do tronco originam derivados semelhantes, tais como melanócitos, neurónios e células gliais. A CN primária tem sido objecto de estudo de um grande número de trabalhos; no entanto, o mesmo não se verifica em relação à CN secundária, sobre a qual são inexistentes dados moleculares relativos às diversas etapas da sua formação. Por esta razão, nós estudamos, ao nível da neurulação secundária (sómitos 30 a 43), a expressão de um número importante de genes responsáveis pela especificação e delaminação das CCN da neurulação primária. O nosso estudo foi realizado em embriões de galinha, durante o 3° dia de desenvolvimento embrionário (estadio 18-20 de Hamburger e Hamilton (HH)). Em primeiro lugar, focamos a nossa análise na região posterior do embrião, ao nível dos somitos 30 a 43, i.e., aquela que contém o TN posterior flanqueado pela mesoderme presomítica (PSM), sómitos epiteliais (SE) e sómitos em início de diferenciação (SED). Desta forma, estudamos estadios sucessivos de maturação da CN segundo uma sequência caudo-rostral. Os resultados obtidos mostram que muitos dos factores de transcripção implicados na especificação da CN primária troncal também são expressos na região dorsal do TN secundário, i.e., formado por cavitação. Genes como Pax3, Pax7 e Snail2 (ex-Slug) são detectados ao nível da PSM posterior enquanto que outros como Msx1 e Msx2 são expressos ao nível da PSM anterior. Após especificação, as CCN secundária em face do 2°-3° últimos sómitos formados delaminam e, tal como a das NCC primária, sofrem eventos celulares idênticos aos de qualquer transição epitelio-mesênquima (TEM). No entanto, RhoB, molécula proposta como responsável pela reorganização do citosqueleto de actina, apresenta um padrão de expressão particular no TN secundário, onde se encontra acumulado no lado apical das células dorsais do TN. Por este facto, analisamos a distribuição da F-actina no TN secundário e observamos que as células da sua CN apresentam morfologia mesênquimatosa, não acumulam F-actina no seu lado basal e emigram. Constatamos igualmente modificações na aderência celular ao longo da formação das CCN, uma vez que as células dorsais do TN secundário exprimem, de forma especifica e dinâmica, Cad6B, N-cadherin e Cad7. Estas alterações na forma e na aderência celular são acompanhadas por mudanças na interacção entre estas as CCN e a matriz extracelular (MEC), como demonstrado pela re-distribuição da forma activa da integrina β1 nestas células, concordante com a sua delaminação. A aquisição de motilidade por parte das CCN secundárias coincide com o aumento da actividade de Bmp4, quer devido ao aumento dos seus transcriptos, quer à diminuição da expressão do seu antagonista Noggin e à expressão de novo de Wnt1. Tal como durante a neurulação primária, estes eventos estão relacionados com a maturação dos sómitos adjacentes, uma vez que as primeiras CCN a migrar são detectadas ao nível dos SED. Esta nossa análise mostra, pela primeira vez, os aspectos moleculares das diferentes fases de formação da CN secundária. Os mecanismos envolvidos nestas fases parecem ser idênticos ao longo do eixo antero-posterior da região troncal do embrião, independentemente do tipo de neurulação que deu origem ao TN. Em segundo lugar, o nosso estudo incidiu sobre a região mais caudal do embrião, localizada ao nível dos sómitos 47 a 53 e formada no quarto dia de desenvolvimento. Um estudo precedente ao nosso mostrou que a ausência de derivados neuronais nesta região não é devido a uma ausência total de CCN. No entanto, nenhuns dados moleculares relativos a formação destas células estavam disponíveis. Assim, começamos por analisar a especificação das CCN mais caudais, constatando que quer os marcadores precoces (Pax3, Pax7 e Msx2) quer os marcadores específicos da NC (Snail2, FoxD3 e Sox9) são todos expressos no NT mais caudal a E4/HH24, excepto Msx1 que nunca foi detectado. No entanto, não conseguimos visualizar NCC a este estadio, mesmo ao nível dos sómitos que começaram a diferenciar-se. Foi necessário “esperarmos” até E5/HH26 para detectarmos algumas CCN próximas do TN, concluindo que, na região mais caudal do embrião, ocorre uma diminuição no número de CCN que emigram e um atraso entre a sua especificação (a E4/HH24) e a sua emigração (a E5/HH26). Os nossos resultados sobre as etapas subsequentes do desenvolvimento da CN sugerem que este atraso resulta de um defeito geral na delaminação das CCN mais caudais. Em primeiro lugar, observamos que CCN não adquirem um fénotipo mesenquimatoso completo a E4/HH24. Neste estadio, as CCN caudais “pré-migratórias” mantêm a polaridade apico-basal típica das células neuroepiteliais e não re-organizam o citosqueleto, o que é visualizado pela distribuição de F-actina. No entanto, as propriedades de aderência celular, assim como as da MEC, não estão comprometidas. Para além disto, as vias de sinalização BMP e WNT estão afectadas no NT dorsal. Vimos que a expressão de Noggin é mantida e que Wnt1 nunca é presente a este nível, apesar dos sómitos adjacentes estarem a diferenciar-se. No entanto, algumas células emigram desta região a E5/HH26. Concomitantemente com estes defeitos de delaminação das CCN mais caudais a E4/HH24, nós também descobrimos um apoptose massiva ao longo da metade dorsal do TN caudal. Muito provavelmente, esta apoptose contribui para o número reduzido de CCN observado nesta região. Um defeito de proliferação celular poderá também contribuir para esta característica, uma vez que observamos uma redução importante na percentagem de células em fase S- e M- do ciclo celular, na região mediana do TN, de E4/HH24 a E5/HH26. De modo a avaliar a influência do ambiente caudal, e mais precisamente do ambiente somítico, nos defeitos de delaminação das CCN mais caudais, realizamos experiências de transplantação ectópica, utilisando a técnica de quimeras galinha-cordoniz. Nós transplantamos ora o TN caudal ora os sómitos caudais de um embrião de cordoniz no estadio E4/HH24 para uma região mais anterior de um embrião de galinha no estadio E2/HH12-12. Mesmo nestas condições, não se formou nenhum gânglio raquidiano a partir do TN transplantado. Inversamente, os sómitos caudais não impedem a formação de gânglios raquidianos (DRG) a partir das NCC endógenas, ainda que estes sejam mais pequenos, mal segmentados e situados mais dorsalmente que os outros DRG. Assim, estas experiências mostram que a ausência de potencial neuronal das NCC mais caudais é uma propriedade intrínseca a estas células e que o ambiente somítico parece ter pouca influência neste processo. Os resultados que obtivemos nas experiências de expressão éctopica de Noggin no TN troncal reforçam esta conclusão. Nesta condição experimental, reproduzimos o “fénotipo” das CCN mais caudais. Na presença de uma baixa concentração de Noggin, apesar de existirem algumas NCC que delaminaram do NT electroporado, estas células não formam DRG. Para determinar o papel desempenhado por Bmp4 e Wnt1 na formação de derivados neuronais, vectores de expressão contendo sequências genómicas de Bmp4, miRNA contra Noggin ou Wnt1 foram electroporados no TN mais caudal. Em todas estas situações experimentais, observamos um aumento no número de CCN que se formam nesta região. No entanto, ainda não conseguimos determinar se este aumento do número de CCN é seguido da formação de derivados neuronais na região mais caudal do embrião. Em suma, o nosso estudo sobre a formação das CCN secundárias, particularmente as que derivam da região mais caudal do embrião, evidencia, pela primeira vez, os mecanismos que conduzem à redução do número de CCN e à ausência de potencial neuronal que caracteriza estas células. Uma vez que a formação da região mais caudal do embrião coincide com a cessação do seu elongamento axial, os nossos resultados poderão contribuir para uma melhor compreenssão sobre os mecanismos que levam à paragem do crescimento AP do embrião., Fundação para a Ciência e Tecnologia - SFRH/BD/11858/2003., Centre National de la Recherche Scientifique., Association pour la Recherche sur le Cancer., Université Pierre et Marie Curie.
19. Establishment of an induced pluripotent cell line (ABCRIi001-A) from an elderly female for ageing research.
- Author
-
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Andrade RP, Calado S, Faleiro ML, Matos C, Marques N, Marreiros A, Nzwalo H, Pais S, Palmeirim I, Simãoa S, Joaquim N, Miranda R, Pêgas A, Raposo DM, Sardo A, Araújo I, Nóbrega C, Castelo-Branco P, and Bragança J
- Subjects
- Female, Humans, Aged, Cell Line, Cellular Reprogramming, Cell Differentiation, Sendai virus genetics, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells cytology, Aging, Leukocytes, Mononuclear cytology, Leukocytes, Mononuclear metabolism
- Abstract
Human induced pluripotent stem cells (hiPSCs) hold promises to model and understand human diseases, including those associated with ageing. Here, we describe ABCRIi001-A, a hiPSC line generated from peripheral blood mononuclear cells (PBMCs) of a 79-year-old female enrolled in a study for development of an ageing score (ALFA Score). PBMCs were reprogrammed using three Sendai virus-based reprogramming vectors (hKOS, hc-Myc, and hKlf4). ABCRIi001-A showed normal morphology and karyotype, viral clearance, absence of genomic aberrations, and their pluripotency was confirmed by expression of pluripotency-related markers and their ability to differentiate into the three germ layers. ABCRIi001-A is valuable for ageing-related studies., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Jose Braganca reports financial support was provided by Regional Development and Coordinating Commission of the Algarve. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
20. [Investigator-Led Clinical Research in Portugal: Problem Identification and Proposals for Improvement].
- Author
-
Ferreira JP, Leite-Moreira A, Da Costa-Pereira A, Soares AJ, Robalo-Cordeiro C, Jerónimo C, Gavina C, J Pinto F, Schmitt F, Saraiva F, Vasques-Nóvoa F, Canhão H, Cyrne-Carvalho H, Palmeirim I, Pimenta J, Cabral da Fonseca JE, Firmino-Machado J, Correia Pinto J, Lino, Castelo Branco M, Sousa N, Fontes de Carvalho R, Machado Luciano T, Gil Oliveira T, and Resende Oliveira C
- Published
- 2023
- Full Text
- View/download PDF
21. Recent advances in understanding vertebrate segmentation.
- Author
-
Pais-de-Azevedo T, Magno R, Duarte I, and Palmeirim I
- Abstract
Segmentation is the partitioning of the body axis into a series of repeating units or segments. This widespread body plan is found in annelids, arthropods, and chordates, showing it to be a successful developmental strategy for growing and generating diverse morphology and anatomy. Segmentation has been extensively studied over the years. Forty years ago, Cooke and Zeeman published the Clock and Wavefront model, creating a theoretical framework of how developing cells could acquire and keep temporal and spatial information in order to generate a segmented pattern. Twenty years later, in 1997, Palmeirim and co-workers found the first clock gene whose oscillatory expression pattern fitted within Cooke and Zeeman's model. Currently, in 2017, new experimental techniques, such as new ex vivo experimental models, real-time imaging of gene expression, live single cell tracking, and simplified transgenics approaches, are revealing some of the fine details of the molecular processes underlying the inner workings of the segmentation mechanisms, bringing new insights into this fundamental process. Here we review and discuss new emerging views that further our understanding of the vertebrate segmentation clock, with a particular emphasis on recent publications that challenge and/or complement the currently accepted Clock and Wavefront model., Competing Interests: No competing interests were disclosed.No competing interests were disclosed.No competing interests were disclosed.No competing interests were disclosed.
- Published
- 2018
- Full Text
- View/download PDF
22. rdml: A Mathematica package for parsing and importing Real-Time qPCR data.
- Author
-
Magno R, Duarte I, Andrade RP, and Palmeirim I
- Subjects
- Data Interpretation, Statistical, Mathematical Computing, Real-Time Polymerase Chain Reaction methods, Software
- Abstract
Objective: The purpose and objective of the research presented is to provide a package for easy importing of Real-Time PCR data markup language (RDML) data to Mathematica., Results: Real-Time qPCR is the most widely used experimental method for the accurate quantification of gene expression. To enable the straightforward archiving and sharing of qPCR data and its associated experimental information, an XML-based data standard was developed-the Real-Time PCR data markup language (RDML)-devised by the RDML consortium. Here, we present rdml, a package to parse and import RDML data into Mathematica, allowing the quick loading and extraction of relevant data, thus promoting the re-analysis, meta-analysis or experimental re-validation of gene expression data deposited in RDML format.
- Published
- 2017
- Full Text
- View/download PDF
23. Mechanisms of vertebrate embryo segmentation: Common themes in trunk and limb development.
- Author
-
Sheeba CJ, Andrade RP, and Palmeirim I
- Subjects
- Animals, Embryonic Development, Gene Expression Regulation, Developmental, Humans, Mesoderm embryology, Organogenesis, Signal Transduction, Torso embryology, Tretinoin physiology, Body Patterning, Extremities embryology
- Abstract
Various ultradian rhythms ensure proper temporal regulations during embryo development. The embryo molecular clock, which was first identified in the presomitic mesoderm (PSM) underlying periodic somite formation, is one among them. Somites are the earliest manifestation of the segmented vertebrate body and they are formed with strict temporal precision. The tetrapod limb is also a segmented structure and the formation of limb bone elements have also been associated with a molecular clock, operating in the distal limb mesenchyme. In both the PSM and the distal limb mesenchyme, the molecular clock (MC) is influenced by FGF, SHH and RA, which are also the key regulators of the development of these tissues. While somitogenesis has been continuously scrutinized to understand the mechanisms of the MC, the limb bud has served as an outstanding paradigm to study how a cohort of undifferentiated cells is organized into functional 3D structures. The fact that both the trunk and limb development are shaped by the MC and by common signaling molecules has prompted the exciting possibility of establishing parallelisms between somitogenesis and limb development. Systematically correlating various parameters during trunk and limb development will help us to appreciate the common principles underlying segmented structure formation and allow the rise of new questions in order to fill the gaps in our present understanding. In this review we have established the parallelisms between somitogenesis and limb development at the level of gene expression patterns and their regulation. Finally, we have also discussed the most evident new avenues this exercise could open to the scientific community., (Copyright © 2016 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
24. Getting a handle on embryo limb development: Molecular interactions driving limb outgrowth and patterning.
- Author
-
Sheeba CJ, Andrade RP, and Palmeirim I
- Subjects
- Body Patterning, Cell Differentiation, Embryonic Development, Hedgehog Proteins physiology, Humans, Organogenesis, Signal Transduction, Extremities embryology, Gene Expression Regulation, Developmental
- Abstract
Development of the vertebrate embryo involves multiple segmentation processes to generate a functional, articulated organism. Cell proliferation, differentiation and patterning involve spatially and temporally regulated gene expression and signal transduction mechanisms. The developing vertebrate limb is an excellent model to study such fine-tuned regulations, whereby cells proliferate and are differentially sculptured along the proximal-distal, anterior-posterior and dorsal-ventral axes to form a functional limb. Complementary experimental approaches in different organisms have enhanced our knowledge on the molecular events underlying limb development. Herein, we summarize the current knowledge of the main signaling mechanisms governing vertebrate limb initiation, outgrowth, specification of limb segments and termination., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
25. Patterning in time and space: HoxB cluster gene expression in the developing chick embryo.
- Author
-
Gouveia A, Marcelino HM, Gonçalves L, Palmeirim I, and Andrade RP
- Subjects
- Animals, Chick Embryo cytology, Chick Embryo metabolism, Chickens, Embryonic Development, Gene Expression Regulation, Developmental, Homeodomain Proteins genetics, In Situ Hybridization, Mesoderm metabolism, Homeodomain Proteins metabolism
- Abstract
The developing embryo is a paradigmatic model to study molecular mechanisms of time control in Biology. Hox genes are key players in the specification of tissue identity during embryo development and their expression is under strict temporal regulation. However, the molecular mechanisms underlying timely Hox activation in the early embryo remain unknown. This is hindered by the lack of a rigorous temporal framework of sequential Hox expression within a single cluster. Herein, a thorough characterization of HoxB cluster gene expression was performed over time and space in the early chick embryo. Clear temporal collinearity of HoxB cluster gene expression activation was observed. Spatial collinearity of HoxB expression was evidenced in different stages of development and in multiple tissues. Using embryo explant cultures we showed that HoxB2 is cyclically expressed in the rostral presomitic mesoderm with the same periodicity as somite formation, suggesting a link between timely tissue specification and somite formation. We foresee that the molecular framework herein provided will facilitate experimental approaches aimed at identifying the regulatory mechanisms underlying Hox expression in Time and Space.
- Published
- 2015
- Full Text
- View/download PDF
26. Limb patterning: from signaling gradients to molecular oscillations.
- Author
-
Sheeba CJ, Andrade RP, and Palmeirim I
- Subjects
- Animals, Basic Helix-Loop-Helix Transcription Factors genetics, Basic Helix-Loop-Helix Transcription Factors metabolism, Bone Morphogenetic Proteins metabolism, Chick Embryo, Fibroblast Growth Factors genetics, Fibroblast Growth Factors metabolism, Hedgehog Proteins metabolism, Homeodomain Proteins genetics, Homeodomain Proteins metabolism, Kruppel-Like Transcription Factors genetics, Kruppel-Like Transcription Factors metabolism, Mice, Models, Biological, Nerve Tissue Proteins genetics, Nerve Tissue Proteins metabolism, Transcription Factor HES-1, Tretinoin metabolism, Zinc Finger Protein Gli3, Body Patterning, Extremities embryology, Gene Expression Regulation, Developmental, Signal Transduction
- Abstract
The developing forelimb is patterned along the proximal-distal and anterior-posterior axes by opposing gradients of retinoic acid and fibroblast growth factors and by graded sonic hedgehog signaling, respectively. However, how coordinated patterning along both axes is accomplished with temporal precision remains unknown. The limb molecular oscillator hairy2 was recently shown to be a direct readout of the combined signaling activities of retinoic acid, fibroblast growth factor and sonic hedgehog in the limb mesenchyme. Herein, an integrated time-space model is presented to conciliate the progress zone and two-signal models for limb patterning. We propose that the limb clock may allow temporal information to be decoded into positional information when the distance between opposing signaling gradients is no longer sufficient to provide distinct cell fate specification., (Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
27. Timing embryo segmentation: dynamics and regulatory mechanisms of the vertebrate segmentation clock.
- Author
-
Resende TP, Andrade RP, and Palmeirim I
- Subjects
- Animals, Humans, Models, Genetic, Time Factors, Biological Clocks genetics, Embryonic Development genetics, Gene Regulatory Networks, Vertebrates embryology, Vertebrates genetics
- Abstract
All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations.
- Published
- 2014
- Full Text
- View/download PDF
28. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets.
- Author
-
Miranda-Gonçalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, Cordeiro M, Bebiano G, Costa P, Palmeirim I, Reis RM, and Baltazar F
- Subjects
- Animals, Apoptosis, Blotting, Western, Brain pathology, Brain Neoplasms drug therapy, Brain Neoplasms metabolism, Cell Adhesion, Cell Membrane metabolism, Cell Movement, Cell Proliferation, Chick Embryo, Chorioallantoic Membrane metabolism, Coumaric Acids pharmacology, Glioma drug therapy, Glioma metabolism, Humans, Immunoenzyme Techniques, Monocarboxylic Acid Transporters antagonists & inhibitors, Monocarboxylic Acid Transporters genetics, Neoplasm Grading, RNA, Small Interfering genetics, Symporters antagonists & inhibitors, Symporters genetics, Tumor Cells, Cultured, Wound Healing, Basigin metabolism, Brain metabolism, Brain Neoplasms pathology, Glioma pathology, Monocarboxylic Acid Transporters metabolism, Muscle Proteins metabolism, Symporters metabolism
- Abstract
Background: Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD147 and to assess the therapeutic impact of MCT inhibition in gliomas., Methods: MCTs and CD147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models., Results: MCT1, MCT4, and CD147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed., Conclusions: This is the most comprehensive study reporting the expression of MCTs and CD147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment.
- Published
- 2013
- Full Text
- View/download PDF
29. Joint interpretation of AER/FGF and ZPA/SHH over time and space underlies hairy2 expression in the chick limb.
- Author
-
Sheeba CJ, Andrade RP, and Palmeirim I
- Abstract
Embryo development requires precise orchestration of cell proliferation and differentiation in both time and space. A molecular clock operating through gene expression oscillations was first described in the presomitic mesoderm (PSM) underlying periodic somite formation. Cycles of HES gene expression have been further identified in other progenitor cells, including the chick distal limb mesenchyme, embryonic neural progenitors and both mesenchymal and embryonic stem cells. In the limb, hairy2 is expressed in the distal mesenchyme, adjacent to the FGF source (AER) and along the ZPA-derived SHH gradient, the two major regulators of limb development. Here we report that hairy2 expression depends on joint AER/FGF and ZPA/SHH signaling. FGF plays an instructive role on hairy2, mediated by Erk and Akt pathway activation, while SHH acts by creating a permissive state defined by Gli3-A/Gli3-R>1. Moreover, we show that AER/FGF and ZPA/SHH present distinct temporal and spatial signaling properties in the distal limb mesenchyme: SHH acts at a long-term, long-range on hairy2, while FGF has a short-term, short-range action. Our work establishes limb hairy2 expression as an output of integrated FGF and SHH signaling in time and space, providing novel clues for understanding the regulatory mechanisms underlying HES oscillations in multiple systems, including embryonic stem cell pluripotency.
- Published
- 2012
- Full Text
- View/download PDF
30. Circadian clock genes Bmal1 and Clock during early chick development.
- Author
-
Gonçalves L, Vinhas M, Pereira R, Pais De Azevedo T, Bajanca F, and Palmeirim I
- Subjects
- ARNTL Transcription Factors genetics, Animals, CLOCK Proteins genetics, Chick Embryo, Chickens, Circadian Clocks genetics, Circadian Clocks physiology, Gene Expression Regulation, Developmental genetics, Gene Expression Regulation, Developmental physiology, In Situ Hybridization, Reverse Transcriptase Polymerase Chain Reaction, ARNTL Transcription Factors metabolism, CLOCK Proteins metabolism
- Abstract
Background: The circadian clock is a well-described temporal organizer in adult organisms. Despite the particularly evident need for temporal control during embryo development, the effect of environmental cues is still greatly neglected. Few studies have reported circadian clock gene expression in early embryonic stages. However, nothing is known about circadian clock gene expression and function in the first stages of avian embryogenesis., Results/conclusions: In this work, the presence and spatial distribution of core circadian clock Bmal1 and Clock transcripts were thoroughly characterized during the first 50 hr of chick development using reverse transcriptase-polymerase chain reaction (RT-PCR), single and double whole-mount in situ hybridization and subsequent cross-section histology analysis. RT-PCR detected both Bmal1 and Clock transcripts since the egg is laid and until the embryo reaches the 22-somite stage. Whole-mount in situ hybridization showed that Bmal1 and Clock are expressed in the Hensen's node and primitive streak at early gastrula stage. Later, both mRNAs are present in the developing nervous system, optic vesicle, notochord, foregut, and somites. Clock was further identified in the developing heart. Noticeably, Bmal1 and Clock are expressed with a "salt and pepper" pattern, suggesting the existence of nonentrained oscillatory transcription which could play a nondependent dark/light function during chick embryo development., (Copyright © 2012 Wiley Periodicals, Inc.)
- Published
- 2012
- Full Text
- View/download PDF
31. Tissue regulation of somitic colloid-like1 gene expression.
- Author
-
Pais de Azevedo T, Zuzarte-Luís V, Gonçalves L, Marques C, and Palmeirim I
- Subjects
- Animals, Bone Morphogenetic Protein 4 genetics, Carrier Proteins genetics, Chick Embryo, Glycoproteins genetics, Intercellular Signaling Peptides and Proteins genetics, Wnt Proteins genetics, Bone Morphogenetic Protein 1 genetics, Gene Expression Regulation, Developmental, Muscle Development genetics, Neck Muscles embryology, Somites metabolism, Tolloid-Like Metalloproteinases genetics
- Abstract
Body skeletal muscles formation starts with somite differentiation, due to signals from surrounding tissues. Somite ventral portion forms the sclerotome while its dorsal fraction constitutes the dermamyotome, and later the dermatome and myotome. Relative levels of BMP activity have been proposed to control several aspects of somite development, namely the time and location of myogenesis within the somite. The fine-tuning of BMP activity is primarily achieved via negative regulation by diffusible BMP inhibitors, such as Noggin and Chordin, and on a secondary level by proteins cleaving these inhibitors, such as BMP1/Tolloid metalloprotease family members. Herein, we carefully described the somitic expression of colloid-like1, one of the chick BMP1/Tolloid homologues, and found that this gene is specifically expressed in the 10 most anterior somites, suggesting that it may be involved in neck muscle formation. By using in ovo microsurgery and tridimensional embryo tissue culture techniques we assessed the function of surrounding structures, neural tube, notochord, surface ectoderm and lateral plate mesoderm, on the maintenance of somitic colloid-like1 gene expression. We unveil that a signal coming from the neural tube is responsible for this expression and rule out the main candidate pathway, Wnt. By comparing the somitic colloid-like1 gene expression with that of related signaling partners, such as BMP4, Noggin and Chordin, we propose that colloid-like1 plays a role in the reinforcement of BMP4 activity in the medial portion of the 10 most anterior dermomyotomes, thus belonging to the molecular machinery controlling neck muscle development in the chick., (Copyright © 2012 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
32. Retinoic acid signaling regulates embryonic clock hairy2 gene expression in the developing chick limb.
- Author
-
Sheeba CJ, Palmeirim I, and Andrade RP
- Subjects
- Animals, Chick Embryo, Extracellular Signal-Regulated MAP Kinases metabolism, Kruppel-Like Transcription Factors metabolism, Phosphatidylinositol 3-Kinases metabolism, Phosphorylation, Signal Transduction, Tretinoin pharmacology, Basic Helix-Loop-Helix Transcription Factors genetics, Chickens genetics, Extremities embryology, Gene Expression Regulation, Developmental, Repressor Proteins genetics, Tretinoin metabolism
- Abstract
Embryo development proceeds under strict temporal control and an embryonic molecular clock (EC), evidenced by cyclic gene expression, is operating during somite formation and limb development, providing temporal information to precursor cells. In somite precursor cells, EC gene expression and periodicity depends on Retinoic acid (RA) signaling and this morphogen is also essential for limb initiation, outgrowth and patterning. Since the limb EC gene hairy2 is differentially expressed along the proximal-distal axis as growth proceeds, concomitant with changes in flank-derived RA activity in the mesenchyme, we have interrogated the role of RA signaling on limb hairy2 expression regulation. We describe RA as a positive regulator of limb hairy2 expression. Ectopic supplementation of RA induced hairy2 in a short time period, with simultaneous transient activation of Erk/MAPK, Akt/PI3K and Gli3 intracellular pathways. We further found that FGF8, an inducer of Erk/MAPK, Akt/PI3K pathways, was not sufficient for ectopic hairy2 induction. However, joint treatment with both RA and FGF8 induced hairy2, indicating that RA is creating a permissive condition for p-Erk/p-Akt action on hairy2, most likely by enhancing Gli3-A/Gli3-R levels. Finally, we observed an inhibitory action of BMP4 on hairy2 and propose a model whereby RA shapes limb hairy2 expression during limb development, by activating its expression and counteracting the inhibitory action of BMP4 on hairy2. Overall, our work reports a novel role for RA in the regulation of limb clock hairy2 gene expression and elucidates the temporal response of multiple intracellular pathways to RA signaling in limb development., (Copyright © 2012 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
33. Sonic hedgehog in temporal control of somite formation.
- Author
-
Resende TP, Ferreira M, Teillet MA, Tavares AT, Andrade RP, and Palmeirim I
- Subjects
- Animals, Biological Clocks drug effects, Biological Clocks genetics, Chick Embryo, Gene Expression Regulation, Developmental drug effects, Mesoderm cytology, Mesoderm drug effects, Mesoderm metabolism, Notochord cytology, Notochord drug effects, Notochord metabolism, Signal Transduction drug effects, Somites cytology, Somites drug effects, Time Factors, Tretinoin pharmacology, Body Patterning drug effects, Hedgehog Proteins metabolism, Somites metabolism
- Abstract
Vertebrate embryo somite formation is temporally controlled by the cyclic expression of somitogenesis clock genes in the presomitic mesoderm (PSM). The somitogenesis clock is believed to be an intrinsic property of this tissue, operating independently of embryonic midline structures and the signaling molecules produced therein, namely Sonic hedgehog (Shh). This work revisits the notochord signaling contribution to temporal control of PSM segmentation by assessing the rate and number of somites formed and somitogenesis molecular clock gene expression oscillations upon notochord ablation. The absence of the notochord causes a delay in somite formation, accompanied by an increase in the period of molecular clock oscillations. Shh is the notochord-derived signal responsible for this effect, as these alterations are recapitulated by Shh signaling inhibitors and rescued by an external Shh supply. We have characterized chick smoothened expression pattern and have found that the PSM expresses both patched1 and smoothened Shh signal transducers. Upon notochord ablation, patched1, gli1, and fgf8 are down-regulated, whereas gli2 and gli3 are overexpressed. Strikingly, notochord-deprived PSM segmentation rate recovers over time, concomitant with raldh2 overexpression. Accordingly, exogenous RA supplement rescues notochord ablation effects on somite formation. A model is presented in which Shh and RA pathways converge to inhibit PSM Gli activity, ensuring timely somite formation. Altogether, our data provide evidence that a balance between different pathways ensures the robustness of timely somite formation and that notochord-derived Shh is a component of the molecular network regulating the pace of the somitogenesis clock.
- Published
- 2010
- Full Text
- View/download PDF
34. Comprehensive analysis of fibroblast growth factor receptor expression patterns during chick forelimb development.
- Author
-
Sheeba CJ, Andrade RP, Duprez D, and Palmeirim I
- Subjects
- Animals, Chick Embryo, Ectoderm embryology, Ectoderm metabolism, Fibroblast Growth Factors metabolism, Gene Expression, Gene Expression Profiling, In Situ Hybridization, Limb Buds metabolism, Mesoderm embryology, Mesoderm metabolism, Molecular Sequence Data, Receptors, Fibroblast Growth Factor metabolism, Reverse Transcriptase Polymerase Chain Reaction, Signal Transduction, Wings, Animal metabolism, Fibroblast Growth Factors genetics, Gene Expression Regulation, Developmental, Limb Buds embryology, Receptors, Fibroblast Growth Factor genetics, Wings, Animal embryology
- Abstract
Specific interactions between fibroblast growth factors (Fgf1-22) and their tyrosine kinase receptors (FgfR1-4) activate different signalling pathways that are responsible for the biological processes in which Fgf signalling is implicated during embryonic development. In the chick, several Fgf ligands (Fgf2, 4, 8, 9, 10, 12, 13 and 18) and the four FgfRs (FgfR 1, 2, 3 and 4) have been reported to be expressed in the developing limb. The precise spatial and temporal expression of these transcripts is important to guide the limb bud to develop into a wing/leg. In this paper, we present a detailed and systematic analysis of the expression patterns of FgfR1, 2, 3 and 4 throughout chick wing development, by in situ hybridisation on whole mounts and sections. Moreover, we characterize for the first time the different isoforms of FGFR1-3 by analysing their differential expression in limb ectoderm and mesodermal tissues, using RT-PCR and in situ hybridisation on sections. Finally, isoform-specific sequences for FgfR1IIIb, FgfR1IIIc, FgfR3IIIb and FgfR3IIIc were determined and deposited in GenBank with the following accession numbers: GU053725, GU065444, GU053726, GU065445, respectively.
- Published
- 2010
- Full Text
- View/download PDF
35. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis.
- Author
-
Martins GG, Rifes P, Amândio R, Rodrigues G, Palmeirim I, and Thorsteinsdóttir S
- Subjects
- Animals, Cadherins metabolism, Cell Movement, Chickens, Eggs, Epithelium metabolism, Extracellular Matrix metabolism, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Immunohistochemistry methods, Mesoderm metabolism, Microscopy, Confocal methods, Somites metabolism, Time Factors, Fibronectins chemistry, Somites physiology
- Abstract
Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos, segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells. To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during morphogenesis.
- Published
- 2009
- Full Text
- View/download PDF
36. Neural crest ontogeny during secondary neurulation: a gene expression pattern study in the chick embryo.
- Author
-
Osório L, Teillet MA, Palmeirim I, and Catala M
- Subjects
- Animals, Cadherins metabolism, Cell Movement, Chick Embryo, Neural Crest cytology, rhoB GTP-Binding Protein metabolism, Gene Expression Regulation, Developmental genetics, Neural Crest embryology, Neural Crest metabolism, Neurulation physiology
- Abstract
In the prospective lumbo-sacral region of the chick embryo, neurulation is achieved by cavitation of the medullary cord, a process called secondary neurulation. Neural crest cells (NCC) are generated in this region and they give rise to the same types of derivatives as in more rostral parts of the trunk where neurulation occurs by dorsal fusion of the neural plate borders (primary neurulation). However, no molecular data were available concerning the different steps of their ontogeny. We thus performed a detailed expression study of molecular players likely to participate in the generation of secondary NCC in chick embryos between Hamburger and Hamilton stages 18-20 (HH18-20) at the level of somites 30 to 43. We found that specification of secondary NCC involves, as in primary neurulation, the activity of several transcription factors such as Pax3, Pax7, Snail2, FoxD3 and Sox9, which are all expressed in the dorsal secondary neural tube as soon as full cavitation is achieved. Moreover, once specification has occurred, emigration of NCC from the dorsal neuroepithelium starts facing early dissociating somites and involves a series of changes in cell shape and adhesion, as well as interactions with the extracellular matrix. Furthermore, Bmp4 and Wnt1 expression precedes the detection of migratory secondary NCC and is coincident with maturation of adjacent somites. Altogether, this first study of molecular aspects of secondary NCC ontogeny has revealed that the mechanisms of neural crest generation occurring along the trunk region of the chick embryo are generally conserved and independent of the type of neurulation involved.
- Published
- 2009
- Full Text
- View/download PDF
37. Portuguese contributions to the discovery and characterization of the embryonic molecular clock.
- Author
-
Pascoal S and Palmeirim I
- Subjects
- Animals, Body Patterning genetics, Chick Embryo, Gene Expression Regulation, Developmental, History, 20th Century, History, 21st Century, In Situ Hybridization, Models, Biological, Portugal, Somites embryology, Time Factors, Avian Proteins genetics, Basic Helix-Loop-Helix Transcription Factors genetics, Biological Clocks genetics, Research Personnel history, Somites metabolism
- Abstract
Embryonic development is strictly regulated both in time and in space. This extraordinary control is clearly evidenced during the process of somitogenesis. In this process, pairs of somites are formed periodically, such that the time required to form a new somite pair is constant and species specific. The tight temporal control underlying somitogenesis has been shown to depend upon a molecular clock, manifested by the cyclic expression of an increasing number of genes in the unsegmented paraxial mesoderm. Portuguese researchers have been intimately connected to the achievements that have been made in this new field of research: the somitogenesis molecular clock. This article intends to report the Portuguese contributions to the discovery and characterization of the molecular clock underlying somite formation and possibly other embryonic processes. This work inspired many scientists around the world and it has been followed in Portugal by teams that keep on pursuing the characterization of the machinery of this molecular oscillator and its function in the acquisition of both temporal and positional information during development.
- Published
- 2009
- Full Text
- View/download PDF
38. A small great history of the sister Societies of Developmental Biology in Spain and Portugal.
- Author
-
Palmeirim I and Aréchaga J
- Subjects
- History, 20th Century, History, 21st Century, Humans, Organizational Objectives, Portugal, Research standards, Research Personnel standards, Societies organization & administration, Spain, Developmental Biology, Periodicals as Topic history, Societies history
- Abstract
We revise the historical evolution of the societies devoted to Developmental Biology from the early activities of the Institut International dEmbryologie (IIE), founded in 1911, with particular emphasis on the more recent constitution of the Spanish Sociedad Española de Biología del Desarrollo (SEBD), founded in 1994, and the Portuguese Sociedade Portuguesa de Biologia do Desenvolvimento (SPBD), founded in 2006. We also describe the role played by The International Journal of Developmental Biology (IJDB) in the constitution of the SEBD and its projection and support to international Developmental Biology societies and individual researchers in the world, according to its mission to be a non-for-profit publication for scientists, by scientists.
- Published
- 2009
- Full Text
- View/download PDF
39. Development on time.
- Author
-
Palmeirim I, Rodrigues S, Dale JK, and Maroto M
- Subjects
- Animals, Chick Embryo embryology, Mesoderm embryology, Models, Biological, Somites embryology, Biological Clocks, Embryonic Development genetics
- Abstract
Temporal control is considered the fourth dimension in embryonic development and it sets the pace to attain the correct molecular patterning of the developing embryo. In this chapter we review one of the best-studied time dependent events in embryogenesis, which is the formation ofsomites. Somites are the basis of the future segmented framework of the vertebrate adult body and their reiterated appearance during the early stages of embryo development establishes the proper temporal and physical template from where other structures will develop and consequently shape the segmentation pattern of the embryo. Several models have been proposed over the last few decades to explain the mechanism(s) regulating somite periodicity, but no molecular evidence seemed to back up any of the postulated models. Remarkably, in 1997 the first evidence that the formation of the somites depended on an intrinsic molecular clock was at last provided through the description of oscillating gene expression in the tissue from which somites are generated. Since then, a huge amount of data has been and continues to be provided that is gradually revealing the ever more complex molecular mechanism underlying this segmentation clock. We are also beginning to learn about embryonic structures other than the somites which exhibit oscillations of gene expression suggesting they too are dependent upon a segmentation-like clock. This is in itself the clearest evidence that there is still a long way to go before we unveil the myriad of molecular mechanisms that lead to the time control of embryonic development.
- Published
- 2008
- Full Text
- View/download PDF
40. Redefining the role of ectoderm in somitogenesis: a player in the formation of the fibronectin matrix of presomitic mesoderm.
- Author
-
Rifes P, Carvalho L, Lopes C, Andrade RP, Rodrigues G, Palmeirim I, and Thorsteinsdóttir S
- Subjects
- Animals, Cell Separation methods, Cells, Cultured, Chick Embryo, Collagenases pharmacology, Fibronectins chemistry, Models, Biological, Pancreatin pharmacology, Tissue Culture Techniques, Ectoderm physiology, Embryonic Development, Extracellular Matrix metabolism, Fibronectins metabolism, Mesoderm cytology, Somites cytology
- Abstract
The absence of ectoderm impairs somite formation in cultured presomitic mesoderm (PSM) explants, suggesting that an ectoderm-derived signal is essential for somitogenesis. Here we show in chick that the standard enzymatic treatments used for explant isolation destroy the fibronectin matrix surrounding the anterior PSM, which fails to form somites when cultured for 6 hours. By contrast, explants isolated with collagenase retain their fibronectin matrix and form somites under identical culture conditions. The additional presence of ectoderm enhances somite formation, whereas endoderm has no effect. Furthermore, we show that pancreatin-isolated PSM explants cultured in fibronectin-supplemented medium, form significantly more somites than control explants. Interestingly, ectoderm is the major producer of fibronectin (Fn1) transcripts, whereas all but the anterior-most region of the PSM expresses the fibronectin assembly receptor, integrin alpha5 (Itga5). We thus propose that the ectoderm-derived fibronectin is assembled by mesodermal alpha5beta1 integrin on the surface of the PSM. Finally, we demonstrate that inhibition of fibronectin fibrillogenesis in explants with ectoderm abrogates somitogenesis. We conclude that a fibronectin matrix is essential for morphological somite formation and that a major, previously unrecognised role of ectoderm in somitogenesis is the synthesis of fibronectin.
- Published
- 2007
- Full Text
- View/download PDF
41. Chick Hairy1 protein interacts with Sap18, a component of the Sin3/HDAC transcriptional repressor complex.
- Author
-
Sheeba CJ, Palmeirim I, and Andrade RP
- Subjects
- Animals, Avian Proteins genetics, Basic Helix-Loop-Helix Transcription Factors genetics, Biological Clocks physiology, Carrier Proteins genetics, Chickens, Embryo, Nonmammalian anatomy & histology, Embryo, Nonmammalian physiology, Histone Deacetylases genetics, Humans, Sin3 Histone Deacetylase and Corepressor Complex, Transcription, Genetic, Two-Hybrid System Techniques, Avian Proteins metabolism, Basic Helix-Loop-Helix Transcription Factors metabolism, Body Patterning, Carrier Proteins metabolism, Gene Expression Regulation, Developmental, Histone Deacetylases metabolism, Somites physiology
- Abstract
Background: The vertebrate adult axial skeleton, trunk and limb skeletal muscles and dermis of the back all arise from early embryonic structures called somites. Somites are symmetrically positioned flanking the embryo axial structures (neural tube and notochord) and are periodically formed in a anterior-posterior direction from the presomitic mesoderm. The time required to form a somite pair is constant and species-specific. This extraordinary periodicity is proposed to depend on an underlying somitogenesis molecular clock, firstly evidenced by the cyclic expression of the chick hairy1 gene in the unsegmented presomitic mesoderm with a 90 min periodicity, corresponding to the time required to form a somite pair in the chick embryo. The number of hairy1 oscillations at any given moment is proposed to provide the cell with both temporal and positional information along the embryo's anterior-posterior axis. Nevertheless, how this is accomplished and what biological processes are involved is still unknown. Aiming at understanding the molecular events triggered by the somitogenesis clock Hairy1 protein, we have employed the yeast two-hybrid system to identify Hairy1 interaction partners., Results: Sap18, an adaptor molecule of the Sin3/HDAC transcriptional repressor complex, was found to interact with the C-terminal portion of the Hairy1 protein in a yeast two-hybrid assay and the Hairy1/Sap18 interaction was independently confirmed by co-immunoprecipitation experiments. We have characterized the expression patterns of both sap18 and sin3a genes during chick embryo development, using in situ hybridization experiments. We found that both sap18 and sin3a expression patterns co-localize in vivo with hairy1 expression domains in chick rostral presomitic mesoderm and caudal region of somites., Conclusion: Hairy1 belongs to the hairy-enhancer-of-split family of transcriptional repressor proteins. Our results indicate that during chick somitogenesis Hairy1 may mediate gene transcriptional repression by recruiting the Sin3/HDAC complex, through a direct interaction with the Sap18 adaptor molecule. Moreover, since sap18 and sin3a are not expressed in the PSM territory where hairy1 presents cyclic expression, our study strongly points to different roles for Hairy1 throughout the PSM and in the prospective somite and caudal region of already formed somites.
- Published
- 2007
- Full Text
- View/download PDF
42. Molecular clocks underlying vertebrate embryo segmentation: A 10-year-old hairy-go-round.
- Author
-
Andrade RP, Palmeirim I, and Bajanca F
- Subjects
- Animals, Birds, Cell Differentiation, Humans, Somites cytology, Transcription Factors metabolism, Biological Clocks, Congenital Abnormalities, Embryonic Development, Gene Expression Regulation, Developmental, Transcription Factors genetics
- Abstract
Segmentation of the vertebrate embryo body is a fundamental developmental process that occurs with strict temporal precision. Temporal control of this process is achieved through molecular segmentation clocks, evidenced by oscillations of gene expression in the unsegmented presomitic mesoderm (PSM, precursor tissue of the axial skeleton) and in the distal limb mesenchyme (limb chondrogenic precursor cells). The first segmentation clock gene, hairy1, was identified in the chick embryo PSM in 1997. Ten years later, chick hairy2 expression unveils a molecular clock operating during limb development. This review revisits vertebrate embryo segmentation with special emphasis on the current knowledge on somitogenesis and limb molecular clocks. A compilation of human congenital disorders that may arise from deregulated embryo clock mechanisms is presented here, in an attempt to reconcile different sources of information regarding vertebrate embryo development. Challenging open questions concerning the somitogenesis clock are presented and discussed, such as When?, Where?, How?, and What for? Hopefully the next decade will be equally rich in answers., ((c) 2007 Wiley-Liss, Inc.)
- Published
- 2007
- Full Text
- View/download PDF
43. A molecular clock operates during chick autopod proximal-distal outgrowth.
- Author
-
Pascoal S, Carvalho CR, Rodriguez-León J, Delfini MC, Duprez D, Thorsteinsdóttir S, and Palmeirim I
- Subjects
- Animals, Avian Proteins genetics, Avian Proteins metabolism, Chick Embryo, Gene Expression Regulation, Developmental, Mesoderm metabolism, Periodicity, Biological Clocks, Body Patterning, Embryonic Development, Forelimb embryology
- Abstract
Temporal control can be considered the fourth dimension in embryonic development. The identification of the somitogenesis molecular clock provided new insight into how embryonic cells measure time. We provide the first evidence of a molecular clock operating during chick fore-limb autopod outgrowth and patterning, by showing that the expression of the somitogenesis clock component hairy2 cycles in autopod chondrogenic precursor cells with a 6 h periodicity. We determined the length of time required to form an autopod skeletal limb element, and established a correlation between the latter and the periodicity of cyclic hairy2 gene expression. We suggest that temporal control exerted by cyclic gene expression can be a widespread mechanism providing cellular temporal information during vertebrate embryonic development.
- Published
- 2007
- Full Text
- View/download PDF
44. Progressive mRNA decay establishes an mkp3 expression gradient in the chick limb bud.
- Author
-
Pascoal S, Andrade RP, Bajanca F, and Palmeirim I
- Subjects
- Animals, Chick Embryo, Exons genetics, Fibroblast Growth Factor 8 metabolism, Limb Buds embryology, RNA, Messenger genetics, RNA, Messenger metabolism, Up-Regulation, Gene Expression Regulation, Developmental, Limb Buds metabolism, Protein Tyrosine Phosphatases genetics, RNA Stability physiology
- Abstract
The apical ectodermal ridge (AER) controls limb outgrowth and patterning, such that its removal causes changes in mesodermal gene expression, cell death and limb truncation. Fibroblast growth factor (FGF) family members are expressed in the AER and can rescue limb bud outgrowth after AER removal. Cells localized underneath the AER are maintained in an undifferentiated state by the FGFs produced by the AER. MAPK phosphatase 3 (mkp3) is a downstream effector of FGF8 signalling during limb bud development and is expressed in the distal limb mesenchyme. The present work evidences a gradient of mkp3 transcripts along the chick limb bud, in a distal to proximal direction. mkp3 transcription occurs only in the most distal limb bud cells and its mRNA gradient throughout the limb results from progressive mRNA decay. We show that FGF8-soaked beads induce ectopic mkp3 expression, indicating that AER-derived FGF8 protein may activate mkp3 in the distal mesenchyme.
- Published
- 2007
- Full Text
- View/download PDF
45. Molecular characterization of the rostral-most somites in early somitic stages of the chick embryo.
- Author
-
Rodrigues S, Santos J, and Palmeirim I
- Subjects
- Animals, Basic Helix-Loop-Helix Transcription Factors genetics, Chick Embryo, Gene Expression Profiling, Gene Expression Regulation, Developmental, Glycosyltransferases genetics, In Situ Hybridization, Intracellular Signaling Peptides and Proteins, Membrane Proteins genetics, Signal Transduction, Somites cytology, Avian Proteins genetics, Body Patterning genetics, Receptors, Notch genetics, Somites metabolism
- Abstract
Segmentation consists on the progressive formation of repetitive embryonic structures, named somites, which are formed from the most rostral part of the presomitic mesoderm. Somites are subdivided into anterior and posterior compartments and several genes are differentially expressed in either compartment. This has provided evidence for the importance of establishing the anterior-posterior polarity within each somite, which is critical for the correct segmented pattern of the adult vertebrate body. Although all somites appear morphologically similar, fate map studies have shown that the first 4 somites do not give rise to segmented structures, in contrast to more posterior ones. Moreover, in several somitogenesis-related mutants the anterior somites are not affected while posterior somites present clear defects or do not form at all. Altogether these data suggest relevant differences between rostral and caudal somites. In order to check for molecular differences between anterior and posterior somites, we have performed a detailed expression pattern analysis of several Notch signalling related genes. For the first time, we show that the somitic expression pattern profile is not the same along the anterior-posterior axis and that the differences are not observed always at the same somite level.
- Published
- 2006
- Full Text
- View/download PDF
46. Head-tail patterning of the vertebrate embryo: one, two or many unresolved problems?
- Author
-
Stern CD, Charité J, Deschamps J, Duboule D, Durston AJ, Kmita M, Nicolas JF, Palmeirim I, Smith JC, and Wolpert L
- Subjects
- Animals, Body Patterning genetics, Embryo, Mammalian cytology, Models, Anatomic, Models, Biological, Body Patterning physiology, Embryo, Mammalian anatomy & histology, Embryo, Mammalian physiology, Embryo, Nonmammalian
- Abstract
When, where and how is the head-tail axis of the embryo set up during development? These are such fundamental and intensely studied questions that one might expect them to have been answered long ago. Not so; we still understand very little about the cellular or molecular mechanisms that lead to the orderly arrangement of body elements along the head-tail axis in vertebrates. In this paper, we outline some of the major outstanding problems and controversies and try to identify some reasons why it has been so difficult to resolve this important issue.
- Published
- 2006
- Full Text
- View/download PDF
47. terra is a left-right asymmetry gene required for left-right synchronization of the segmentation clock.
- Author
-
Saúde L, Lourenço R, Gonçalves A, and Palmeirim I
- Subjects
- Animals, Biological Clocks physiology, Chick Embryo, DNA-Binding Proteins genetics, DNA-Binding Proteins metabolism, Gene Expression Regulation, Developmental genetics, Mesoderm metabolism, Muscle, Skeletal embryology, Somites cytology, Time Factors, Transcription Factors genetics, Body Patterning physiology, Embryonic Development physiology, Functional Laterality physiology, Musculoskeletal Development physiology, Somites metabolism, Transcription Factors metabolism
- Abstract
To establish the vertebrate body plan, it is fundamental to create left-right asymmetry in the lateral-plate mesoderm to correctly position the organs. However, it is also crucial to maintain symmetry between the left and the right sides of the presomitic mesoderm, ensuring the allocation of symmetrical body structures, such as the axial skeleton and skeletal muscles. Here, we show that terra is an early left-sided expressed gene that links left-right patterning with bilateral synchronization of the segmentation clock.
- Published
- 2005
- Full Text
- View/download PDF
48. Thinking clockwise.
- Author
-
Andrade RP, Pascoal S, and Palmeirim I
- Subjects
- Animals, Gene Expression Regulation, Developmental physiology, Models, Biological, Time Factors, Biological Clocks physiology, Body Patterning physiology, Embryonic Development physiology, Somites physiology
- Abstract
Throughout the Animal Kingdom, the time of embryonic development is maintained and strictly controlled. Each step of the process is successful only when it occurs at the right time and place. This raises the question: how is time controlled during embryonic development? Time control is particularly crucial during embryo segmentation processes, where the number of generated segments, as well as the time of formation of each segment, is extraordinarily constant and specific for each species. Somitogenesis is the process through which the vertebrate presomitic mesoderm is segmented along its anterior-posterior axis into round-shaped masses of epithelial cells, named somites. In the chick embryo, a new pair of somites is formed every 90 min. The discovery that this clock-like precision is dictated by the somitogenesis molecular clock constituted a landmark in the Developmental Biology field. Several genes exhibit cyclic gene expression in the embryo presomitic mesoderm from which the somites arise, presenting a 90 min oscillation period, the time required to form a pair of somites. The combined levels of dynamic gene expression throughout the presomitic mesoderm enable cells to acquire positional information, thus giving them a notion of time. Anterior-posterior patterning of the vertebrate nervous system also involves partition into discrete territories. This is particularly evident in the hindbrain where overt segmentation occurs. Nevertheless, little is known about the segmentation genes and mechanisms that may be involved. This paper intends to describe the molecular clock associated with vertebrate somitogenesis, suggesting that it may be operating in many other patterning processes.
- Published
- 2005
- Full Text
- View/download PDF
49. Running after the clock.
- Author
-
Freitas C, Rodrigues S, Saude L, and Palmeirim I
- Subjects
- Animals, CLOCK Proteins, Circadian Rhythm, Embryonic Development, Gene Expression Regulation, Developmental, Mammals embryology, Morphogenesis, Mutation, Promoter Regions, Genetic, Trans-Activators genetics, Biological Clocks, Vertebrates embryology, Vertebrates genetics
- Abstract
The way we currently understand vertebrate development is undoubtedly associated with the research undertaken at the "Institut d'Embryologie Cellulaire et Moleculaire" at Nogent-sur-Marne during the last decades. Working in this Institute has been a privilege for many junior and senior researchers. Eight years ago, in this stimulating environment, an exciting observation followed by a series of revealing experiments gave rise to a novel field of research. This study provided evidence for the existence of a molecular clock underlying chick somite formation. In this review, we focus on the cascade of studies that have followed this discovery. Thus far, it has been demonstrated that the molecular clock is operating in several vertebrate models namely chick, mouse, zebrafish, frog and medaka, probably functioning to provide cells with multidimensional positional information. Loss and gain of function experiments and detailed gene promoter analyses have proved very useful in understanding how the clock machinery works. Recent data has also led to the fascinating hypothesis that the clock might not be an exclusive property of somitic cells, but rather a mechanism used by a wide range of embryonic tissues. Meanwhile, the clock "keeps ticking" and many questions are still waiting for an answer.
- Published
- 2005
- Full Text
- View/download PDF
50. [Segmentation in vertebrates: a molecular clock linked to periodic somite formation].
- Author
-
Palmeirim I
- Subjects
- Animals, Basic Helix-Loop-Helix Transcription Factors, Biological Clocks, Bone and Bones embryology, Chick Embryo, Embryo, Nonmammalian physiology, Embryonic Induction, Gastrula physiology, Mesoderm physiology, Proteins genetics, Avian Proteins, Body Patterning, Vertebrates embryology
- Abstract
In the vertebrate embryo, somites constitute the basis of the segmental body pattern. They give rise to the axial skeleton, the dermis of the back and all striated muscles of the body. In the chick embryo, a pair of somites buds off, in a highly coordinated fashion, every 90 minutes, from the cranial end of the presomitic mesoderm (PSM) while new mesenchymal cells enter the paraxial mesoderm as a consequence of gastrulation. The processes leading to the segmentation of the somite are not yet understood. We have identified and characterised c-hairy1, an avian homologue of the Drosophila segmentation gene, hairy. c-hairy1 is strongly expressed in the presomitic mesoderm where its mRNA exhibits a cyclic posterior-to-anterior wave of expression whose periodicity corresponds to the formation time of one somite (90 min). Fate mapping of the rostral half of the PSM using the quail-chick chimera technique supports a model of cryptic segmentation within the presomitic mesoderm, and indicates that c-hairy1 expression dynamics are not due to massive cell displacement. Analysis of in vitro cultures of isolated presomitic mesoderm demonstrates that rhythmic c-hairy1 mRNA production and degradation is an autonomous property of the paraxial mesoderm. Rather than resulting from the caudal-to-rostral propagation of an activating signal, it arises from pulses of c-hairy1 expression that are coordinated in time and space. Blocking protein synthesis does not alter the propagation of c-hairy1 expression, indicating that negative autoregulation of c-hairy1 expression is unlikely to control its periodic expression. Most of the segmentation models proposed for somite formation rely on the existence of an internal clock coordinating the cells to segment together to form a somite. These results provide the first molecular evidence of a developmental clock linked to segmentation and somitogenesis of the paraxial mesoderm, and support the possibility that segmentation mechanisms used by invertebrates and vertebrates have been conserved.
- Published
- 1999
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.