8 results on '"Palli J"'
Search Results
2. Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic
- Author
-
Max Planck Society, Estonian Research Council, European Research Council, Latvian Council of Science, Ministerio de Economía y Competitividad (España), Ministerio de Educación, Cultura y Deporte (España), Swedish Research Council, Volkswagen Foundation, Ministerio de Ciencia e Innovación (España), López Sáez, José Antonio [0000-0002-3122-2744], Izdebski, A., Guzowski, P., Poniat, R., Masci, Lucrezia, Palli, J., Vignola, Cristiano, Bauch, M., Cocozza, C., Fernandes, R., Ljungqvist , F.C., Newfield, T., Seim, A., Abel-Schaad, D., Alba-Sánchez, F., Björkman, L., Brauer, A., Brown, A., Czerwiński, S., Ejarque, A., Fiłoc, M., Florenzano, A., Fredh, E. D., Fyfe, R, Jasiunas, N., Kołaczek, P., Kouli, K., Kozáková, R., Kupryjanowicz, M., Lagerås, P., Lamentowicz. M., Lindbladh, M., López Sáez, José Antonio, Luelmo Lautenschlaeger, Reyes, Marcisz, K., Mazier, F., Mensing, S., Mercuri, A.M., Milecka, K., Miras, Y., Noryśkiewicz, A.M., Novenko, E., Obremska, M., Panajiotidis, S., Papadopoulou, M.L., Pędziszewska, A., Pérez-Díaz, Sebastián, Piovesan, G., Pluskowski, A., Pokorný, Petr, Poska, A., Reitalu, T., Rösch, M., Sadori , L., Sá Ferreira, C., Sebag, D., Słowiński, M., Stančikaitė, M., Stivrins, N., Tunno, I., Veski, S., Wacnik, A., Masi, A., Max Planck Society, Estonian Research Council, European Research Council, Latvian Council of Science, Ministerio de Economía y Competitividad (España), Ministerio de Educación, Cultura y Deporte (España), Swedish Research Council, Volkswagen Foundation, Ministerio de Ciencia e Innovación (España), López Sáez, José Antonio [0000-0002-3122-2744], Izdebski, A., Guzowski, P., Poniat, R., Masci, Lucrezia, Palli, J., Vignola, Cristiano, Bauch, M., Cocozza, C., Fernandes, R., Ljungqvist , F.C., Newfield, T., Seim, A., Abel-Schaad, D., Alba-Sánchez, F., Björkman, L., Brauer, A., Brown, A., Czerwiński, S., Ejarque, A., Fiłoc, M., Florenzano, A., Fredh, E. D., Fyfe, R, Jasiunas, N., Kołaczek, P., Kouli, K., Kozáková, R., Kupryjanowicz, M., Lagerås, P., Lamentowicz. M., Lindbladh, M., López Sáez, José Antonio, Luelmo Lautenschlaeger, Reyes, Marcisz, K., Mazier, F., Mensing, S., Mercuri, A.M., Milecka, K., Miras, Y., Noryśkiewicz, A.M., Novenko, E., Obremska, M., Panajiotidis, S., Papadopoulou, M.L., Pędziszewska, A., Pérez-Díaz, Sebastián, Piovesan, G., Pluskowski, A., Pokorný, Petr, Poska, A., Reitalu, T., Rösch, M., Sadori , L., Sá Ferreira, C., Sebag, D., Słowiński, M., Stančikaitė, M., Stivrins, N., Tunno, I., Veski, S., Wacnik, A., and Masi, A.
- Abstract
The Black Death (1347–1352 CE) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics.
- Published
- 2022
3. Big Data Palaeoecology reveals significant variation in Black Death mortality in Europe [Preprint]
- Author
-
Izdebski, A., Guzowski, P., Poniat, R., Masci, L., Palli, J., Vignola, C., Bauch, M., Cocozza, C., Fernandes, R., Ljungqvist, F. C., Newfield, T., Seim, A., Abel-Schaad, D., Alba-Sánchez, F., Björkman, L., Brauer, A., Brown, A., Czerwiński, S., Ejarque, A., Fiłoc, M., Florenzano, A., Fredh, E. D., Fyfe, R., Jasiunas, N., Kołaczek, P., Kouli, K., 1, Kozáková, R., Kupryjanowicz, M., Lagerås, P., Lamentowicz, M., Lindbladh, M., López-Sáez, J. A., Luelmo-Lautenschlaeger, R., Marcisz, K., Mazier, F., Mensing, S., Mercuri, A. M., Milecka, K., Miras, Y., Noryśkiewicz, A. M., Novenko, E., Obremska, M., Panajiotidis, S., Papadopoulou, M. L., Pędziszewska, A., Pérez-Díaz, S., Piovesan, G., Pluskowski, A., Pokorny, P., Poska, A., Reitalu, T., Rösch, M., Sadori, L., Sá Ferreira, C., Sebag, D., Słowiński, M., Stančikaitė, M., Stivrins, N., Tunno, I., Veski, S., Wacnik, A., Masi, A., Universidad de Cantabria, Max Planck Institute for the Science of Human History (MPI-SHH), Max-Planck-Gesellschaft, Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ), University of Bialystok, Department of Earth Sciences, Sapienza University of Rome, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Department of Environmental Biology, Sapienza University of Rome, Università degli studi della Tuscia [Viterbo], Leibniz Institute for the History and Culture of Eastern Europe (GWZO), Universität Leipzig, ArchaeoBioCenter, Ludwig-Maximilians-Universität München, München, Germany, School of Archaeology, University of Oxford, Oxford, UK, Masaryk University [Brno] (MUNI), Stockholm University, Bolin Centre for Climate Research, Swedish Collegium for Advanced Study [Uppsala], Department of History, Georgetown University, Washington DC, USA, Department of biology, georgetown University, Washington DC, Chair of Forest Growth and Dendroecology, University of Freiburg, Institute of Botany [Innsbruck], Leopold Franzens Universität Innsbruck - University of Innsbruck, Universidad de Granada = University of Granada (UGR), Viscum Pollenanalys & Miljöhistoria, Nässjö, Sweden, German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), Institute of Geosciences [Potsdam], University of Potsdam = Universität Potsdam, Wessex Archaeology [Salisbury], Department of Archaeology and Centre for Past Climate Change, University of Reading, Reading, UK, Adam Mickiewicz University in Poznań (UAM), Laboratoire de Géographie Physique et Environnementale (GEOLAB), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut des Sciences de l'Evolution de Montpellier (UMR ISEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Department of Palaeobiology, Faculty of Biology, University of Białystok, Białystok, Poland, Laboratory of Palynology and Palaeobotany, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy, The Arctic University of Norway [Tromsø, Norway] (UiT), School of Geography, Earth and Environmental Sciences [Plymouth] (SoGEES), Plymouth University, University of Latvia (LU), National and Kapodistrian University of Athens (NKUA), Institute of Archaeology of the Czech Academy of Sciences, Prague, The Archaeologists, National Historical Museums, Lund, Sweden, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Environmental Archaeology Research Group, Institute of History, CSIC, Madrid, Spain, Department of Geography, Universidad Autónoma de Madrid, Madrid, Spain, Géographie de l'environnement (GEODE), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Department of Geography, University of Nevada, Reno, USA, Histoire naturelle de l'Homme préhistorique (HNHP), Muséum national d'Histoire naturelle (MNHN)-Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Nicolaus Copernicus University [Toruń], MSU Faculty of Geography [Moscow], Lomonosov Moscow State University (MSU), Institute of Geography, Russian Academy of Sciences, Moscow, Russian Federation, Institute of Geological Sciences, Polish Academy of Sciences, Polska Akademia Nauk = Polish Academy of Sciences (PAN), Laboratory of Forest Botany-Geobotany, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece, University of Cologne, Faculty of Biology [Gdansk, Poland], University of Gdańsk (UG), Department of Geography, Urban and Regional Planning, Universidad de Cantabria, Santander, Spain., Centre for Theoretical Studies, Charles University, Czechia (CTS), Charles University [Prague] (CU)-Czech Academy of Sciences [Prague] (CAS), Institute of Geology at Tallinn, Tallinn University of Technology (TTÜ), Universität Heidelberg [Heidelberg] = Heidelberg University, Queen's University [Belfast] (QUB), IFP Energies nouvelles (IFPEN), Institute of Geography and Spatial Organization, Polish Academy of Sciences, Nature Research Centre, Institute of Geology and Geography, Vilnius, Lithuania, Center for Accelerator Mass Spectrometry (CAMS), Lawrence Livermore National Laboratory, Lawrence, CA, USA, W. Szafer Institute of Botany, Polish Academy of Sciences, European Project: 263735,EC:FP7:ERC,ERC-2010-StG_20091209,TEC(2010), Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745, Jena, Germany, Faculty of History and International Relations, University of Bialystok, Bialystok, Poland, Department of Earth Science, Sapienza University of Rome, Rome, Italy, Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy, Leibniz Institute for the History and Culture of Eastern Europe (GWZO), Leipzig, Germany, Swedish Collegium for Advanced Study, Uppsala, Sweden, Chair of Forest Growth and Dendroecology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Universität Innsbruck [Innsbruck], GFZ-German Research Centre for Geosciences, Section Climate Dynamics and Landscape Evolution, Potsdam, Germany, Institute of Geosciences, University of Potsdam, Potsdam, Germany, Wessex Archaeology, Portway House, Salisbury, UK, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École pratique des hautes études (EPHE), The Arctic University of Norway (UiT), Institute of Archeology, Academy of Sciences of the Czech Republic, Prague, Czech Republi, Université Toulouse - Jean Jaurès (UT2J)-Centre National de la Recherche Scientifique (CNRS), Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia., Department of Quaternary Research, Institute of Geography Russian Academy of Science, Moscow, Russia, Institute of Geological Sciences, Polish Academy of Sciences, Warsaw, Poland., Laboratory of Palaeoecology and Archaeobotany, Department of Plant Ecology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland., Charles University [Prague] (CU), Department of Geology, Tallinn University of Technology, Tallinn, Estonia, Lund University [Lund], Department of Geology, Tallinn University of Technology, Tallinn, Estonia., Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia, University of Tartu, Universität Heidelberg [Heidelberg], IFP Energies Nouvelles, Earth Sciences and Environmental Technologies Division, Rueil-Malmaison, Rueil-Malmaison, Past Landscape Dynamics Laboratory, Institute of Geography and Spatial Organization, Polish Academy of Sciences, Warsaw, Poland., 3 Department of Geology, Tallinn University of Technology, Tallinn, Estonia, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland., Institute of History, Jagiellonian University in Krakow, Krakow, Poland, Department of Agriculture and Forest Sciences (Dafne), University of Tuscia, Viterbo, Italy, Department of Ecological and Biological Sciences (Deb), University of Tuscia, Viterbo, Italy., Faculty of Arts, Masaryk University, Brno, Czech Republic, Department of Botany, University of Innsbruck, Innsbruck, Austria, Department of Botany, University of Granada, Granada, Spain, Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland., Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Université Clermont Auvergne (UCA)-Institut Sciences de l'Homme et de la Société (IR SHS UNILIM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), ISEM, UMR 5554, Université Montpellier, CNRS, EPHE, IRD, Montpellier, Museum of Archaeology, University of Stavanger, Stavanger, Norway, School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, UK, Department of Geography, University of Latvia, Riga, Latvia., Climate Change Ecology Research Unit, Adam Mickiewicz University, Poznań, Poland, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden, Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J), Anthropocene Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, CNRS, HNHP UMR 7194, Muséum National d’Histoire Naturelle, Institut de Paléontologie Humaine, Paris, France, Institute of Archaeology, Faculty of History, Nicolaus Copernicus University, Toruń, Poland., Centre for Climate Change Research, Nicolaus Copernicus University, Toruń, Poland, Institute of Geography, University of Cologne, Cologne, Germany, Department of Ecological and Biological Sciences (Deb), University of Tuscia, Viterbo, Italy, Centre for Theoretical Study, Charles University and Academy of Sciences of the Czech Republic, Prague, Czech Republic., Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden, Department of Pre- and Early History and West Asian Archaeology, University of Heidelberg, Heidelberg, Germany, School of Natural and Built Environment, Queen’s University, Belfast, Northern Ireland, Department of Geography, University of Latvia, Riga, Latvia, Institute of Latvian History, University of Latvia, Riga, Latvia., Max Planck Society, Estonian Research Council, European Research Council, Latvian Council of Science, Ministerio de Economía y Competitividad (España), Ministerio de Educación, Cultura y Deporte (España), Swedish Research Council, Volkswagen Foundation, Ministerio de Ciencia e Innovación (España), López Sáez, José Antonio [0000-0002-3122-2744], López Sáez, José Antonio, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS), and Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université de Perpignan Via Domitia (UPVD)
- Subjects
Land-use changes ,Ecology ,black death pandemic ,Humaniora: 000::Arkeologi: 090 [VDP] ,palaeoecological data ,[SHS.GEO]Humanities and Social Sciences/Geography ,paleoecology ,palynology, big data, paleoecology ,Europe ,big data ,[SHS.ENVIR]Humanities and Social Sciences/Environmental studies ,[SDE]Environmental Sciences ,[SHS.HIST]Humanities and Social Sciences/History ,palynology ,Ecology, Evolution, Behavior and Systematics - Abstract
The authors acknowledge the following funding sources: Max Planck Independent Research Group, Palaeo-Science and History Group (A.I., A.M. and C.V.); Estonian Research Council #PRG323, PUT1173 (A.Pos., T.R., N.S. and S.V.); European Research Council #FP7 263735 (A.Bro. and A.Plu.), #MSC 655659 (A.E.); Georgetown Environmental Initiative (T.N.); Latvian Council of Science #LZP-2020/2-0060 (N.S. and N.J.); LLNL-JRNL-820941 (I.T.); NSF award #GSS-1228126 (S.M.); Polish-Swiss Research Programme #013/2010 CLIMPEAT (M.Lam.), #086/2010 CLIMPOL (A.W.); Polish Ministry of Science and Higher Education #N N306 275635 (M.K.); Polish National Science Centre #2019/03/X/ST10/00849 (M.Lam.), #2015/17/B/ST10/01656 (M.Lam.), #2015/17/B/ST10/03430 (M.So.), #2018/31/B/ST10/02498 (M.So.), #N N304 319636 (A.W.); SCIEX #12.286 (K.Mar.); Spanish Ministry of Economy and Competitiveness #REDISCO-HAR2017-88035-P (J.A.L.S.); Spanish Ministry of Education, Culture and Sports #FPU16/00676 (R.L.L.); Swedish Research Council #421-2010-1570 (P.L.), #2018-01272 (F.C.L. and A.S.); Volkswagen Foundation Freigeist Fellowship Dantean Anomaly (M.B.), Spanish Ministry of Science and Innovation #RTI2018-101714-B-I00 (F.A.S. and D.A.S.), OP RDE, MEYS project #CZ.02.1.01/0.0/0.0/16_019/0000728 (P.P.)., The Black Death (1347–1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of Europe’s population. However, despite advances in ancient DNA research that conclusively identified the pandemic’s causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, ‘big data palaeoecology’, which, starting from palynological data, evaluates the scale of the Black Death’s mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death’s mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on historical pandemics., Max Planck Independent Research Group, Palaeo-Science and History Group, Estonian Research Council PRG323 PUT1173, European Research Council (ERC) European Commission FP7 263735 MSC 655659, Georgetown Environmental Initiative, Latvian Ministry of Education and Science LZP-2020/2-0060 LLNL-JRNL-820941, National Science Foundation (NSF) GSS-1228126, Polish-Swiss Research Programme 013/2010 086/2010, Ministry of Science and Higher Education, Poland N306 275635, Polish National Science Centre 2019/03/X/ST10/00849 2015/17/B/ST10/01656 2015/17/B/ST10/03430 2018/31/B/ST10/02498 N N304 319636, SCIEX 12.286, Spanish Government REDISCO-HAR2017-88035-P FPU16/00676, Swedish Research Council, European Commission 421-2010-1570 2018-01272, Volkswagen Foundation Freigeist Fellowship Dantean Anomaly, Spanish Government RTI2018-101714-B-I00, OP RDE, MEYS project CZ.02.1.01/0.0/0.0/16_019/0000728
- Published
- 2022
- Full Text
- View/download PDF
4. Palaeoecological data indicates land-use changes across Europe linked tospatial heterogeneity in mortality during the Black Death pandemic
- Author
-
Izdebski, A. Guzowski, P. Poniat, R. Masci, L. Palli, J. and Vignola, C. Bauch, M. Cocozza, C. Fernandes, R. and Ljungqvist, F. C. Newfield, T. Seim, A. Abel-Schaad, D. and Alba-Sanchez, F. Bjoerkman, L. Brauer, A. Brown, A. and Czerwinski, S. Ejarque, A. Filoc, M. Florenzano, A. and Fredh, E. D. Fyfe, R. Jasiunas, N. Kolaczek, P. Kouli, K. Kozakova, R. Kupryjanowicz, M. Lageras, P. and Lamentowicz, M. Lindbladh, M. Lopez-Saez, J. A. and Luelmo-Lautenschlaeger, R. Marcisz, K. Mazier, F. Mensing, S. Mercuri, A. M. Milecka, K. Miras, Y. Noryskiewicz, A. M. Novenko, E. Obremska, M. Panajiotidis, S. and Papadopoulou, M. L. Pedziszewska, A. Perez-Diaz, S. and Piovesan, G. Pluskowski, A. Pokorny, P. Poska, A. and Reitalu, T. Roesch, M. Sadori, L. Ferreira, C. Sa Sebag, D. Slowinski, M. Stancikaite, M. Stivrins, N. Tunno, I and Veski, S. Wacnik, A. Masi, A. and Izdebski, A. Guzowski, P. Poniat, R. Masci, L. Palli, J. and Vignola, C. Bauch, M. Cocozza, C. Fernandes, R. and Ljungqvist, F. C. Newfield, T. Seim, A. Abel-Schaad, D. and Alba-Sanchez, F. Bjoerkman, L. Brauer, A. Brown, A. and Czerwinski, S. Ejarque, A. Filoc, M. Florenzano, A. and Fredh, E. D. Fyfe, R. Jasiunas, N. Kolaczek, P. Kouli, K. Kozakova, R. Kupryjanowicz, M. Lageras, P. and Lamentowicz, M. Lindbladh, M. Lopez-Saez, J. A. and Luelmo-Lautenschlaeger, R. Marcisz, K. Mazier, F. Mensing, S. Mercuri, A. M. Milecka, K. Miras, Y. Noryskiewicz, A. M. Novenko, E. Obremska, M. Panajiotidis, S. and Papadopoulou, M. L. Pedziszewska, A. Perez-Diaz, S. and Piovesan, G. Pluskowski, A. Pokorny, P. Poska, A. and Reitalu, T. Roesch, M. Sadori, L. Ferreira, C. Sa Sebag, D. Slowinski, M. Stancikaite, M. Stivrins, N. Tunno, I and Veski, S. Wacnik, A. Masi, A.
- Abstract
Historical accounts of the mortality outcomes of the Black Death plague pandemic are variable across Europe, with much higher death tolls suggested in some areas than others. Here the authors use a `big data palaeoecology' approach to show that land use change following the pandemic was spatially variable across Europe, confirming heterogeneous responses with empirical data. The Black Death (1347-1352 ce) is the most renowned pandemic in human history, believed by many to have killed half of Europe's population. However, despite advances in ancient DNA research that conclusively identified the pandemic's causative agent (bacterium Yersinia pestis), our knowledge of the Black Death remains limited, based primarily on qualitative remarks in medieval written sources available for some areas of Western Europe. Here, we remedy this situation by applying a pioneering new approach, `big data palaeoecology', which, starting from palynological data, evaluates the scale of the Black Death's mortality on a regional scale across Europe. We collected pollen data on landscape change from 261 radiocarbon-dated coring sites (lakes and wetlands) located across 19 modern-day European countries. We used two independent methods of analysis to evaluate whether the changes we see in the landscape at the time of the Black Death agree with the hypothesis that a large portion of the population, upwards of half, died within a few years in the 21 historical regions we studied. While we can confirm that the Black Death had a devastating impact in some regions, we found that it had negligible or no impact in others. These inter-regional differences in the Black Death's mortality across Europe demonstrate the significance of cultural, ecological, economic, societal and climatic factors that mediated the dissemination and impact of the disease. The complex interplay of these factors, along with the historical ecology of plague, should be a focus of future research on
5. The return of tall forests: Reconstructing the canopy resilience of an extensively harvested primary forest in Mediterranean mountains.
- Author
-
Baliva M, Palli J, Perri F, Iovino F, Luzzi G, and Piovesan G
- Subjects
- Italy, Abies, Conservation of Natural Resources methods, Climate Change, Trees, Forestry methods, Forests, Fagus
- Abstract
Understanding recovery times and mechanisms of ecosystem dynamics towards the old-growth stage is crucial for forest restoration, but still poorly delineated in Mediterranean. Through tree-ring methods, we reconstructed the return of a tall canopy after severe human disturbance in a mixed beech (Fagus sylvatica) and silver fir (Abies alba) forest, located at a mountain site in the southern edge of both species' range (Gariglione, south Italy). The primary forest was extensively harvested between 1930 and 1950, removing up to 91 % of the biomass. Growth histories, climate-growth relationships and time-series of growth dominance in Gariglione were compared with a network of protected mature and old-growth beech forests distributed along a wide elevational gradient in the same region. We found that the renewed tall canopy of Gariglione is mainly composed of remnant trees, which include uncut trees and saplings, and the post-harvesting regeneration mostly represented by fir. Canopy beech trees reached maximum basal area increment (BAI) in the 1970s, 40-50 years after cutting. Then, beech BAI shifted towards negative trends in phase with drying climate (PDSI), while fir maintained a sustained growth until 2000. This growth asynchrony between the two species conferred community stability over the last decades. The network comparison highlighted the common negative impact of summer drought on high-frequency growth signals of beech in south Italy. However, analysis of long-term mean growth trends indicates decreasing BAI limited to Gariglione beech, revealing relevant differences due to site ecology and its interactions with legacy effects of past management in driving growth responses to climate change. Indeed, lowland mature beech forests showed increasing BAI in the last decades, while primary high-mountain forests displayed a remarkably stable low oscillating growth. In all the Mediterranean forests we studied, large and old trees showed a marked growth acclimation despite ongoing climate warming, demonstrating the effectiveness of landscape rewilding., Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: All authors reports financial support was provided by Sila National Park Agency. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Bell-shaped tree-ring responses to air temperature drive productivity trends in long-lived mountain Mediterranean pines.
- Author
-
Piovesan G, Rita A, Biondi F, Baliva M, Borghetti M, Brunetti M, De Vivo G, Di Filippo A, Dinella A, Gentilesca T, Maugeri M, Palli J, Piotti A, Saba EP, Ripullone F, Schettino A, and Vendramin GG
- Subjects
- Temperature, Ecosystem, Forests, Trees, Pinus
- Abstract
We investigated the dendroclimatic response of a Pinus heldreichii metapopulation distributed over a wide elevation interval (from 882 to 2143 m a.s.l.), spanning from low mountain to upper subalpine vegetation belts in the southern Italian Apennines. The tested hypothesis is that wood growth along an elevational gradient is non-linearly related to air temperature. During three years of fieldwork (2012-2015) at 24 sites, we collected wood cores from a total of 214 pine trees with diameter at breast height from 19 to 180 cm (average 82.7 ± 32.9 cm). We used a combination of tree-ring and genetic methods to reveal factors involved in growth acclimation using a space-for-time approach. Scores from canonical correspondence analysis were used to combine individual tree-ring series into four composite chronologies related to air temperature along the elevation gradient. Overall, the June dendroclimatic response followed a bell-shaped thermal niche curve, increasing until a peak around 13-14 °C. A similarly bell-shaped response was found with previous autumn air temperature, and both dendroclimatic signals interacted with stem size and growth rates, generating a divergent growth response between the top and the bottom of the elevation gradient. Increased tree growth in the upper subalpine belt was consistent with the consequences of increasing air temperature under no drought stress. A positive link was uncovered between pine growth at all elevations and April mean temperature, with trees growing at the lowest elevations showing the strongest growth response. No elevational genetic differences were found, hence long-lived tree species with small geographical ranges may reverse their climatic response between the lower and upper bioclimatic zones of their environmental niche. Our study revealed a high resistance and acclimation capability of Mediterranean forest stands, and such low vulnerability to changing climatic conditions highlights the potential to store carbon in these ecosystems for the coming decades., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. Historical ecology identifies long-term rewilding strategy for conserving Mediterranean mountain forests in south Italy.
- Author
-
Palli J, Mensing SA, Schoolman EM, Solano F, and Piovesan G
- Subjects
- Humans, Forests, Europe, Ecology, Italy, Trees, Ecosystem, Fagus
- Abstract
In the context of global decline in old-growth forest, historical ecology is a valuable tool to derive insights into vegetation legacies and dynamics and develop new conservation and restoration strategies. In this cross-disciplinary study, we integrate palynology (Lago del Pesce record), history, dendrochronology, and historical and contemporary land cover maps to assess drivers of vegetation change over the last millennium in a Mediterranean mountain forest (Pollino National Park, southern Italy) and discuss implications in conservation ecology. The study site hosts a remnant beech-fir (Fagus sylvatica-Abies alba) mixed forest, a priority habitat for biodiversity conservation in Europe. In the 10th century, the pollen record showed an open environment that was quickly colonized by silver fir when sociopolitical instabilities reduced anthropogenic pressures in mountain forests. The highest forest cover and biomass was reached between the 14th and the 17th centuries following land abandonment due to recurring plague pandemics. This rewilding process is also reflected in the recruitment history of Bosnian pine (Pinus heldreichii) in the subalpine elevation belt. Our results show that human impacts have been one of the main drivers of silver fir population contraction in the last centuries in the Mediterranean, and that the removal of direct human pressure led to ecosystem renovation. Since 1910, the Rubbio State Forest has locally protected and restored the mixed beech-fir forest. The institutions in 1972 for the Rubbio Natural Reserve and in 1993 for Pollino National Park have guaranteed the survival of the silver fir population, demonstrating the effectiveness of targeted conservation and restoration policies despite a warming climate. Monitoring silver fir populations can measure the effectiveness of conservation measures. In the last decades, the abandonment of rural environments (rewilding) along the mountains of southern Italy has reduced the pressure on ecosystems, thus boosting forest expansion. However, after four decades of natural regeneration and increasing biomass, pollen influx and forest composition are still far from the natural attributes of the medieval forest ecosystem. We conclude that long-term forest planning encouraging limited direct human disturbance will lead toward rewilding and renovation of carbon-rich and highly biodiverse Mediterranean old-growth forests, which will be more resistant and resilient to future climate change., (© 2022 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.)
- Published
- 2023
- Full Text
- View/download PDF
8. Radiocarbon dating of Aspromonte sessile oaks reveals the oldest dated temperate flowering tree in the world.
- Author
-
Piovesan G, Baliva M, Calcagnile L, D'Elia M, Dorado-Liñán I, Palli J, Siclari A, and Quarta G
- Subjects
- Radiometric Dating, Quercus, Trees
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.