1. Mitochondrial respiratory states and rates: Building blocks of mitochondrial physiology (Part 1)
- Author
-
Gnaiger, E., Ahn, B., Alves, M. G., Amati, F., Aral, C., Arandarčikaitė, O., Åsander Frostner, E., Bailey, David M., Bastos Sant'Anna Silva, A. C., Battino, M., Beard, D. A., Newsom, S., Robinson, M. M., Patel, H. H., Buettner, G. R., Pecina, P., Shevchuk, I., Pereira da Silva Grilo da Silva, F., Ben-Shachar, D., Pesta, D., Goodpaster, B. H., Zorzano, Antonio, Petit, P. X., Pichaud, N., Pirkmajer, S., Porter, R. K., Wagner, B. A., Pranger, F., Rohlena, J., Prochownik, E. V., Siewiera, K., Røsland, G. V., Ehinger, J., Rossiter, H. B., Towheed, A., Rybacka-Mossakowska, J., Dias, T., Salvadego, D., Jansen-Dürr, P., Scatena, R., Schartner, M., Scheibye-Knudsen, Morten, Breton, S., Cardoso, L.H.D., Schilling, J. M., Singer, D., Schlattner, U., Brown, R. A., Sobotka, O., Spinazzi, M., Ward, M. L., Brown, G. C., Gonzalo, H., Stankova, P., Labieniec-Watala, M., Stier, A., Stocker, R., Sumbalova, Zuzana, Doerrier, C., Suravajhala, P., Tretter, L., Tanaka, M., Duchen, Michael R., Trivigno, C., Tronstad, K. J., Carvalho, Eugenia, Drahota, Z., Jackson, C. B., Trougakos, I. P., Tyrrell, D. J., Urban, T., Velika, B., Gorr, T. A., Vercesi, A. E., Watala, C., Victor, V. M., Grefte, S., Wei, Y. H., Wieckowski, M. R., O'Gorman, D., Kucera, O., Wohlwend, M., Wolff, J., Wuest, R.C.I., Zaugg, K., Jespersen, N. R., Zaugg, M., Casado, Marta, Calabria, E., Červinková, Zuzana, Chang, S. C., Radenkovic, F., Moisoi, N., Chicco, A. J., Chinopoulos, C., Coen, P. M., Collins, J. L., Lai, N., Crisóstomo, L., Elmer, E., Davis, M. S., Han, J., Endlicher, R., Pak, Y. K., Fell, D. A., Jha, R. K., Ferko, M., Nozickova, K., Ferreira, J.C.B., Scott, G. R., Filipovska, A., Fisar, Z., Fisher, J., García-Rovés, Pablo M., Molina, A.J.A., Garcia-Souza, L. F., Harrison, D. K., Genova, M. L., Kaambre, T., Hellgren, K. T., Hernansanz-Agustín, Pablo, Laner, V., Holland, O., Puurand, M., Hoppel, C. L., Tepp, K., Houstek, J., Hunger, M., Iglesias-Gonzalez, J., Oliveira, P. F., Irving, B. A., Kane, D. A., Iyer, S., Orynbayeva, Z., Kappler, L., Karabatsiakis, A., Montaigne, D., Oliveira, P. J., Schoenfeld, P., Keijer, J., Keppner, G., Komlodi, T., Kopitar-Jerala, N., Reboredo, P., Krako Jakovljevic, N., Larsen, T. S., Kuang, J., Renner-Sattler, K., Lee, H. K., Lemieux, H., Bishop, D., Tandler, B., Lerfall, J., Lucchinetti, E., MacMillan-Crow, L. A., Makrecka-Kuka, M., Shabalina, I. G., Meszaros, A. T., Moore, A. L., Michalak, S., Moreira, B. P., Mracek, T., Distefano, G., Villena, J. A., Muntané, Jordi, Muntean, D. M., Murray, A. J., Nedergaard, J., Tomar, D., Nemec, M., Palmeira, C. M., and European Commission
- Subjects
Mitochondrial preparations ,Mitochondrial respiratory control ,Proton leak ,Flux ,Flow ,Coupling control ,Efficiency ,State 4 ,Protonmotive force ,State 2 ,OXPHOS ,Residual oxygen consumption ,State 3 ,Electron transfer ,Normalization ,ROX ,Oxidative phosphorylation ,LEAK ,ET - Abstract
Supporting co-authors: Bakker BM, Bernardi P, Boetker HE, Borsheim E, Borutaitė V, Bouitbir J, Calbet JA, Calzia E, Chaurasia B, Clementi E, Coker RH, Collin A, Das AM, De Palma C, Dubouchaud H, Durham WJ, Dyrstad SE, Engin AB, Fornaro M, Gan Z, Garlid KD, Garten A, Gourlay CW, Granata C, Haas CB, Haavik J, Haendeler J, Hand SC, Hepple RT, Hickey AJ, Hoel F, Jang DH, Kainulainen H, Khamoui AV, Klingenspor M, Koopman WJH, Kowaltowski AJ, Krajcova A, Lane N, Lenaz G, Malik A, Markova M, Mazat JP, Menze MA, Methner A, Neuzil J, Oliveira MT, Pallotta ML, Parajuli N, Pettersen IKN, Porter C, Pulinilkunnil T, Ropelle ER, Salin K, Sandi C, Sazanov LA, Silber AM, Skolik R, Smenes BT, Soares FAA, Sokolova I, Sonkar VK, Swerdlow RH, Szabo I, Trifunovic A, Thyfault JP, Valentine JM, Vieyra A, Votion DM, Williams C, Zischka H, As the knowledge base and importance of mitochondrial physiology to human health expand, the necessity for harmonizing nomenclature concerning mitochondrial respiratory states and rates has become increasingly apparent. Clarity of concept and consistency of nomenclature are key trademarks of a research field. These trademarks facilitate effective transdisciplinary communication, education, and ultimately further discovery. Peter Mitchell’s chemiosmotic theory establishes the link between vectorial and scalar energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theory and nomenclature for mitochondrial physiology and bioenergetics. Herein, we follow IUPAC guidelines on general terms of physical chemistry, extended by considerations on open systems and irreversible thermodynamics. We align the nomenclature and symbols of classical bioenergetics with a concept-driven constructive terminology to express the meaning of each quantity clearly and consistently. In this position statement, in the frame of COST Action MitoEAGLE, we endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately support the development of databases of mitochondrial respiratory function in species, tissues, and cells., We thank M. Beno for management assistance. Supported by COST Action CA15203 MitoEAGLE and K-Regio project MitoFit (E.G.).
- Published
- 2018
- Full Text
- View/download PDF