GABA B receptors (GABA B Rs) are heterodimeric seven-transmembrane receptors that interact with a range of proteins and form large protein complexes on cholesterol-rich membrane microdomains. As the brain ages, membrane cholesterol levels exhibit alterations, although it remains unclear how these changes impact protein-protein interactions and downstream signaling. Herein, we studied the structural bases for the interaction between GABA B R and the KCC2 transporter, including their protein expression and distribution, and we compared data between young and aged rat cerebella. Also, we analyzed lipid profiles for both groups, and we used molecular dynamics simulations on three plasma membrane systems with different cholesterol concentrations, to further explore the GABA B R-transporter interaction. Based on our results, we report that a significant decrease in GABA B2 subunit expression occurs in the aged rat cerebella. After performing a comparative co-immunoprecipitation analysis, we confirm that GABA B R and KCC2 form a protein complex in adult and aged rat cerebella, although their interaction levels are reduced substantially as the cerebellum ages. On the other hand, our lipid analyses reveal a significant increase in cholesterol and sphingomyelin levels of the aged cerebella. Finally, we used the Martini coarse-grained model to conduct molecular dynamics simulations, from which we observed that membrane cholesterol concentrations can dictate whether the GABA B R tail domains physically establish G protein-independent contacts with a transporter, and the timing when those associations eventually occur. Taken together, our findings illustrate how age-related alterations in membrane cholesterol levels affect protein-protein interactions, and how they could play a crucial role in regulating GABA B R's interactome-mediated signaling., Significance Statement: This study elucidates age-related changes in cerebellar GABA B receptors (GABA B Rs), KCC2, and plasma membrane lipids, shedding light on mechanisms underlying neurological decline. Molecular dynamics simulations reveal how membrane lipids influence protein-protein interactions, offering insights into age-related neurodegeneration. The findings underscore the broader impact of cerebellar aging on motor functions, cognition, and emotional processing in the elderly. By elucidating plasma membrane regulation and GABAergic dynamics, this research lays the groundwork for understanding aging-related neurological disorders and inspires further investigation into therapeutic interventions., Competing Interests: Competing Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.