1. Investigating 3D NAND Flash Read Disturb Reliability With Extreme Value Analysis
- Author
-
Cristian Zambelli, Piero Olivo, Luca Crippa, and Rino Micheloni
- Subjects
reliability ,Computer science ,3D-TLC NAND flash ,points over threshold ,read disturb ,NAND gate ,Statistical model ,Chip ,Die (integrated circuit) ,NO ,Electronic, Optical and Magnetic Materials ,Reliability engineering ,Flash (photography) ,PE7_2 ,PE7_5 ,Electrical and Electronic Engineering ,Safety, Risk, Reliability and Quality ,Extreme value theory ,Reliability (statistics) ,Parametric statistics - Abstract
The storage systems relying on the 3D NAND Flash technology require an extensive modeling of their reliability in different working corners. This enables the deployment of system-level management routines that do not compromise the overall performance and reliability of the system itself. Dedicated parametric statistical models have been developed so far to capture the evolution of the memory reliability, although limiting the description to an average behavior rather than extreme cases that can disrupt the storage functionality. In this work, we validate the application of an extreme statistics tool, namely the Points-Over-Threshold method, to characterize the read disturb reliability of a 3D NAND Flash chip. Such technique proved that the die reliability characterized through extreme events analysis can be predicted using a low number of samples and generally holds good prediction features for distribution tail events.
- Published
- 2021