Bremsstrahlung is generated in the storage rings of the synchrotron radiation facilities by the radiative interaction of the circulating particle beam with both the residual gas molecules and storage ring components. These bremsstrahlung photons, having an energy range of zero to the maximum energy of the particle beam, interact with beamline components like beam stops and collimators generating photoneutrons of varying energies. There are three main processes by which photoneutrons may be produced by the high energy bremsstrahlung photons: giant nuclear dipole resonance and decay (10 MeV 140 MeV). The giant resonance neutrons are emitted almost isotropically and have an average energy of about 2 MeV. High energy neutrons (E > 10 MeV) emitted from the quasi-deuteron decay and intranuclear cascade are peaked in the forward direction. At the Advanced Photon Source (APS), where bremsstrahlung energy can be as high as 7 GeV, production of photoneutrons in varying yields is possible from all of the above three processes. The bremsstrahlung produced along a typical 15.38-m straight path of the insertion device (ID) beamline of the APS has been measured and analyzed in previous studies. High-Z materials constituting the beamline components, such as collimators and beam stops, can produce photoneutrons upon interaction with these bremsstrahlung photons. The 1/E nature of the bremsstrahlung spectrum and the fact that the photoneutron production cross section is comparatively larger in the energy region 10 MeV < E{sub {gamma}} < 30 MeV, results in the giant resonance interaction being the dominant mechanism that generates photoneutrons at the APS. Such neutron flux in the vicinities of the first optics enclosures (FOEs) of ID beamlines is important, from the point of view of radiation protection of the personnel. Only a few of such neutron flux measurements were conducted at high photon energies. Monte Carlo codes and analytical formulas are used to calculate the differential photon track length in targets. Together with the known photoneutron cross sections, the neutron yields are then determined as a function of incident electron energy. Neutron fluence calculated from these yields assumes isotropic emission of neutrons from a point source target. Because neutron transport is not handled in most of these studies, possible neutron interactions inside the target are not accounted for in calculating the energy and intensity outside the target. There is also the uncertainty of photoneutron production cross section at higher energies. A simultaneous measurement of bremsstrahlung and corresponding photoneutron production will provide photoneutron dose rates as a function of bremsstrahlung energy or power. Along with our already existing bremsstrahlung spectrum measurement expertise, we conducted simultaneous photoneutron dose measurements at the APS from thick targets of Fe, Cu, W, and Pb that are placed in the bremsstrahlung beam inside the FOE of the insertion device beamlines. An Andersson-Braun (AB) remmeter that houses a BF{sub 3} detector, as well as a very sensitive pressurized {sup 3}He detector, is used for neutron dose measurements. The dose equivalent rates, normalized to bremsstrahlung power, beam current, and storage ring vacuum, are measured for various targets. This report details the experimental setup, data acquisition system, calibration procedures, analysis of the data and the results of the measurements.