1. Discovering Strong Gravitational Lenses in the Dark Energy Survey with Interactive Machine Learning and Crowd-sourced Inspection with Space Warps
- Author
-
González, J., Holloway, P., Collett, T., Verma, A., Bechtol, K., Marshall, P., More, A., Barroso, J. Acevedo, Cartwright, G., Martinez, M., Li, T., Rojas, K., Schuldt, S., Birrer, S., Diehl, H. T., Morgan, R., Drlica-Wagner, A., O'Donnell, J. H., Zaborowski, E., Nord, B., Baeten, E. M., Johnson, L. C., Macmillan, C., Roodman, A., Pieres, A., Walker, A. R., Malagón, A. A. Plazas, Rosell, A. Carnero, Santiago, B., Flaugher, B., Gruen, D., Brooks, D., Burke, D. L., James, D. J., Cid, D. Sanchez, Hollowood, D. L., Tucker, D. L., Buckley-Geer, E., Gaztanaga, E., Suchyta, E., Sanchez, E., Gutierrez, G., Giannini, G., Tarle, G., Sevilla-Noarbe, I., Marshall, J. L., Carretero, J., Frieman, J., De Vicente, J., García-Bellido, J., Mena-Fernández, J., Myles, J., Honscheid, K., Kuehn, K., Lima, M., Pereira, M. E. S., Smith, M., Aguena, M., Weaverdyck, N., Lahav, O., Doel, P., Miquel, R., Gruendl, R. A., Cawthon, R., Hinton, S. R., Allam, S. S., Desai, S., Samuroff, S., Everett, S., Lee, S., Davis, T. M., Abbott, T. M. C., and Vikram, V.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We conduct a search for strong gravitational lenses in the Dark Energy Survey (DES) Year 6 imaging data. We implement a pre-trained Vision Transformer (ViT) for our machine learning (ML) architecture and adopt Interactive Machine Learning to construct a training sample with multiple classes to address common types of false positives. Our ML model reduces 236 million DES cutout images to 22,564 targets of interest, including around 85% of previously reported galaxy-galaxy lens candidates discovered in DES. These targets were visually inspected by citizen scientists, who ruled out approximately 90% as false positives. Of the remaining 2,618 candidates, 149 were expert-classified as 'definite' lenses and 516 as 'probable' lenses, with 147 of these candidates being newly identified. Additionally, we trained a second ViT to find double-source plane lens systems, finding at least one double-source system. Our main ViT excels at identifying galaxy-galaxy lenses, consistently assigning high scores to candidates with high confidence. The top 800 ViT-scored images include around 100 of our `definite' lens candidates. This selection is an order of magnitude higher in purity than previous convolutional neural network-based lens searches and demonstrates the feasibility of applying our methodology for discovering large samples of lenses in future surveys.
- Published
- 2025