2,613 results on '"P. Imbert"'
Search Results
2. Scalable Feedback Stabilization of Quantum Light Sources on a CMOS Chip
- Author
-
Kramnik, Danielius, Wang, Imbert, Ramesh, Anirudh, Cabanillas, Josep M. Fargas, Gluhović, Ðorđe, Buchbinder, Sidney, Zarkos, Panagiotis, Adamopoulos, Christos, Kumar, Prem, Stojanović, Vladimir M., and Popović, Miloš A.
- Subjects
Quantum Physics ,Physics - Optics - Abstract
Silicon photonics is a leading platform for realizing the vast numbers of physical qubits needed for useful quantum information processing because it leverages mature complementary metal-oxide-semiconductor (CMOS) manufacturing to integrate on-chip thousands of optical devices for generating and manipulating quantum states of light. A challenge to the practical operation and scale-up of silicon quantum-photonic integrated circuits, however, is the need to control their extreme sensitivity to process and temperature variations, free-carrier and self-heating nonlinearities, and thermal crosstalk. To date these challenges have been partially addressed using bulky off-chip electronics, sacrificing many benefits of a chip-scale platform. Here, we demonstrate the first electronic-photonic quantum system-on-chip (EPQSoC) consisting of quantum-correlated photon-pair sources stabilized via on-chip feedback control circuits, all fabricated in a high-volume 45nm CMOS microelectronics foundry. We use non-invasive photocurrent sensing in a tunable microring cavity photon-pair source to actively lock it to a fixed pump laser while operating in the quantum regime, enabling large scale microring-based quantum systems. In this first demonstration of such a capability, we achieve a high CAR of 134 with an ultra-low g(2)(0) of 0.021 at 2.2 kHz off-chip detected pair rate and 3.3 MHz/mW2 on-chip pair generation efficiency, and over 100 kHz off-chip detected pair rate at higher pump powers (1.5 MHz on-chip). These sources maintain stable quantum properties in the presence of temperature variations, operating reliably in practical settings with many adjacent devices creating thermal disturbances on the same chip. Such dense electronic-photonic integration enables implementation and control of quantum-photonic systems at the scale required for useful quantum information processing with CMOS-fabricated chips.
- Published
- 2024
3. Precise $^{113}$Cd $\beta$ decay spectral shape measurement and interpretation in terms of possible $g_A$ quenching
- Author
-
Bandac, I., Berge, L., Calvo-Mozota, J. M., Carniti, P., Chapellier, M., Danevich, F. A., Dixon, T., Dumoulin, L., Ferri, F., Giuliani, A., Gotti, C., Gras, Ph., Helis, D. L., Imbert, L., Khalife, H., Kobychev, V. V., Kostensalo, J., Loaiza, P., de Marcillac, P., Marnieros, S., Marrache-Kikuchi, C. A., Martinez, M., Nones, C., Olivieri, E., de Solórzano, A. Ortiz, Pessina, G., Poda, D. V., Scarpaci, J. A., Suhonen, J., Tretyak, V. I., Zarytskyy, M., and Zolotarova, A.
- Subjects
Nuclear Experiment - Abstract
Highly forbidden $\beta$ decays provide a sensitive test to nuclear models in a regime in which the decay goes through high spin-multipole states, similar to the neutrinoless double-$\beta$ decay process. There are only 3 nuclei ($^{50}$V, $^{113}$Cd, $^{115}$In) which undergo a $4^{\rm th}$ forbidden non-unique $\beta$ decay. In this work, we compare the experimental $^{113}$Cd spectrum to theoretical spectral shapes in the framework of the spectrum-shape method. We measured with high precision, with the lowest energy threshold and the best energy resolution ever, the $\beta$ spectrum of $^{113}$Cd embedded in a 0.43 kg CdWO$_4$ crystal, operated over 26 days as a bolometer at low temperature in the Canfranc underground laboratory (Spain). We performed a Bayesian fit of the experimental data to three nuclear models (IBFM-2, MQPM and NSM) allowing the reconstruction of the spectral shape as well as the half-life. The fit has two free parameters, one of which is the effective weak axial-vector coupling constant, $g_A^{\text{eff}}$, which resulted in $g_A^{\text{eff}}$ between 1.0 and 1.2, compatible with a possible quenching. Based on the fit, we measured the half-life of the $^{113}$Cd $\beta$ decay including systematic uncertainties as $7.73^{+0.60}_{-0.57} \times 10^{15}$ yr, in agreement with the previous experiments. These results represent a significant step towards a better understanding of low-energy nuclear processes., Comment: Accepted for publication by EPJC
- Published
- 2024
4. What makes seep carbonates ignore self-sealing and grow vertically: the role of burrowing decapod crustaceans
- Author
-
J.-P. Blouet, P. Imbert, S. Ho, A. Wetzel, and A. Foubert
- Subjects
Geology ,QE1-996.5 ,Stratigraphy ,QE640-699 - Abstract
The mechanisms that govern the vertical growth of seep carbonates were deciphered by studying the sedimentary architecture of a 15 m thick, 8 m wide column of limestone encased in deep-water marl in the middle Callovian interval of the Terres Noires Formation in the SE France Basin. The limestone body, also called “pseudobioherm”, records intense bioturbation, with predominant traces of the Thalassinoides/Spongeliomorpha suite, excavated by decapod crustaceans. Bioturbation was organized in four tiers. The uppermost tier, tier 1, corresponds to shallow homogenization of rather soft sediment. Tier 2 corresponds to pervasive burrows dominated by large Thalassinoides that were later passively filled by pellets. Both homogenized micrite and burrow-filling pellets are depleted in 13C in the range from −5 ‰ to −10 ‰. Tier 3 is characterized by small Thalassinoides that have walls locally bored by Trypanites; the latter represent tier 4. The diagenetic cements filling the tier-3 Thalassinoides are arranged in two phases. The first cement generation constitutes a continuous rim that coats the burrow wall and has consistent δ13C values of approximately −8 ‰ to −12 ‰, indicative of bicarbonate originating from the anaerobic oxidation of methane. In contrast, the second cement generation is dominated by saddle dolomite precipitated at temperatures >80 ∘C, at a time when the pseudobioherm was deeply buried. The fact that the tubes remained open until deep burial means that vertical fluid communication was possible over the whole vertical extent of the pseudobioherm up to the seafloor during its active development. Therefore, vertical growth was fostered by this open burrow network, providing a high density of localized conduits through the zone of carbonate precipitation, in particular across the sulfate–methane transition zone. Burrows prevented self-sealing from blocking upward methane migration and laterally deflecting fluid flow. One key aspect is the geometric complexity of the burrows with numerous subhorizontal segments that could trap sediment shed from above and, hence, prevent their passive fill.
- Published
- 2021
- Full Text
- View/download PDF
5. A Review of Implementation Strategies to Enhance PrEP Delivery for People Experiencing Housing Insecurity: Advancing a Multifaceted High-Touch, Low-Barrier Approach.
- Author
-
Velloza, Jennifer, Mehtani, Nicky, Hickey, Matthew, Imbert, Elizabeth, Appa, Ayesha, and Riley, Elise
- Subjects
Care engagement ,HIV ,Homelessness and unstable housing ,Implementation strategies ,Pre-exposure prophylaxis ,Prevention ,Humans ,HIV Infections ,Ill-Housed Persons ,Pre-Exposure Prophylaxis ,Housing ,Anti-HIV Agents ,United States - Abstract
PURPOSE OF REVIEW: This review summarizes key implementation strategies to advance oral and long-acting PrEP delivery for unstably housed people in the United States. RECENT FINDINGS: People experiencing homelessness and housing instability face barriers to PrEP uptake and adherence including lack of safe medication storage, competing basic needs, insurances issues, and/or mental health or substance use disorders. Recent advancements in HIV treatment and prevention provide evidence on high-touch, low-barrier implementation approaches to address these challenges. We compiled these approaches into a multi-component implementation strategy, SHELTER, which includes: low-barrier primary care, case management, incentives, outreach, care coordination, multidisciplinary provider collaboration, data tracking, and robust provider-patient relationships. The US has fallen short of our Ending the Epidemic targets, in part due to challenges in PrEP delivery for people experiencing housing instability. SHELTER provides a comprehensive approach for considering critical components of HIV prevention for this population that can be used in future oral and long-acting PrEP programs.
- Published
- 2024
6. Gehring's Lemma for kinetic Fokker-Planck equations
- Author
-
Guerand, Jessica, Imbert, Cyril, and Mouhot, Clément
- Subjects
Mathematics - Analysis of PDEs - Abstract
In this article, we establish a "Gehring lemma" for a real function satisfying a reverse H\"older inequality on all "kinetic cylinders" contained in a large one: it asserts that the integrability degree of the function improves under such an assumption. The kinetic cylinders are derived from the non-commutative group of invariances of the Kolmogorov equation. Our contributions here are (1) the extension of Gehring's Lemma to this kinetic (hypoelliptic) scaling used to generate the cylinders, (2) the localisation of the lemma in this hypoelliptic context (using ideas from the elliptic theory), (3) the streamlining of a short and quantitative proof. We then use this lemma to establish that the velocity gradient of weak solutions to linear kinetic equations of Fokker-Planck type with rough coefficients have Lebesgue integrability strictly greater than two, while the natural energy estimate merely ensures that it is square integrable. Our argument here is new but relies on Poincar\'e-type inequalities established in previous works.
- Published
- 2024
7. On the monotonicity of the Fisher information for the Boltzmann equation
- Author
-
Imbert, Cyril, Silvestre, Luis, and Villani, Cédric
- Subjects
Mathematics - Analysis of PDEs ,Mathematical Physics - Abstract
We prove that the Fisher information is monotone decreasing in time along solutions of the space-homogeneous Boltzmann equation for a large class of collision kernels covering all classical interactions derived from systems of particles. For general collision kernels, a sufficient condition for the monotonicity of the Fisher information along the flow is related to the best constant for an integro-differential inequality for functions on the sphere, which belongs in the family of the Log-Sobolev inequalities. As a consequence, we establish the existence of global smooth solutions to the space-homogeneous Boltzmann equation in the main situation of interest where this was not known, namely the regime of very soft potentials. This is opening the path to the completion of both the classical program of qualitative study of space-homogeneous Boltzmann equation, initiated by Carleman, and the program of using the Fisher information in the study of the Boltzmann equation, initiated by McKean. From the proofs and discussion emerges a strengthened picture of the links between kinetic theory, information theory and log-Sobolev inequalities., Comment: 35 pages
- Published
- 2024
8. Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems
- Author
-
Imbert-Gérard, Lise-Marie, Moiola, Andrea, Perinati, Chiara, and Stocker, Paul
- Subjects
Mathematics - Numerical Analysis ,65N15, 65N30, 35J25, 41A10, 41A25 - Abstract
Trefftz schemes are high-order Galerkin methods whose discrete spaces are made of elementwise exact solutions of the underlying PDE. Trefftz basis functions can be easily computed for many PDEs that are linear, homogeneous, and have piecewise-constant coefficients. However, if the equation has variable coefficients, exact solutions are generally unavailable. Quasi-Trefftz methods overcome this limitation relying on elementwise "approximate solutions" of the PDE, in the sense of Taylor polynomials. We define polynomial quasi-Trefftz spaces for general linear PDEs with smooth coefficients and source term, describe their approximation properties and, under a non-degeneracy condition, provide a simple algorithm to compute a basis. We then focus on a quasi-Trefftz DG method for variable-coefficient elliptic diffusion-advection-reaction problems, showing stability and high-order convergence of the scheme. The main advantage over standard DG schemes is the higher accuracy for comparable numbers of degrees of freedom. For non-homogeneous problems with piecewise-smooth source term we propose to construct a local quasi-Trefftz particular solution and then solve for the difference. Numerical experiments in 2 and 3 space dimensions show the excellent properties of the method both in diffusion-dominated and advection-dominated problems., Comment: 26 pages, 6 figures, 2 tables, added some remarks and one figure
- Published
- 2024
9. Germs for scalar conservation laws: the Hamilton-Jacobi equation point of view
- Author
-
Forcadel, Nicolas, Imbert, Cyril, and Monneau, Regis
- Subjects
Mathematics - Analysis of PDEs - Abstract
We prove that the entropy solution to a scalar conservation law posed on the real line with a flux that is discontinuous at one point (in the space variable) coincides with the derivative of the solution to a Hamilton-Jacobi (HJ) equation whose Hamiltonian is discontinuous. Flux functions (Hamiltonians) are not assumed to be convex in the state (gradient) variable. The proof consists in proving the convergence of two numerical schemes. We rely on the theory developed by B.~Andreianov, K.~H.~Karlsen and N.~H.~Risebro (\textit{Arch. Ration. Mech. Anal.}, 2011) for such scalar conservation laws and on the viscosity solution theory developed by the authors (\textit{arxiv}, 2023) for the corresponding HJ equation. This study allows us to characterise certain germs introduced in the AKR theory (namely maximal and complete ones) and relaxation operators introduced in the viscosity solution framework.
- Published
- 2024
10. Development of large-volume $^{130}$TeO$_2$ bolometers for the CROSS $2\beta$ decay search experiment
- Author
-
Avignone III, F. T., Barabash, A. S., Berest, V., Bergé, L., Calvo-Mozota, J. M., Carniti, P., Chapellier, M., Dafinei, I., Danevich, F. A., Dumoulin, L., Ferella, F., Ferri, F., Gallas, A., Giuliani, A., Gotti, C., Gras, P., Ianni, A., Imbert, L., Khalife, H., Kobychev, V. V., Konovalov, S. I., Loaiza, P., de Marcillac, P., Marnieros, S., Marrache-Kikuchi, C. A., Martinez, M., Nisi, S., Nones, C., Olivieri, E., de Solórzano, A. Ortiz, Peinaud, Y., Pessina, G., Poda, D. V., Rosier, Ph., Scarpaci, J. A., Tretyak, V. I., Umatov, V. I., Zarytskyy, M. M., and Zolotarova, A.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
We report on the development of thermal detectors based on large-size tellurium dioxide crystals (45x45x45 mm), containing tellurium enriched in $^{130}$Te to about 91%, for the CROSS double-beta decay experiment. A powder used for the crystals growth was additionally purified by the directional solidification method, resulting in the reduction of the concentration of impurities by a factor 10, to a few ppm of the total concentration of residual elements (the main impurity is Fe). The purest part of the ingot (the first ~200 mm, about 80% of the total length of the cylindrical part of the ingot) was determined by scanning segregation profiles of impurities and used for the $^{130}$TeO$_2$ powder production with no evidence of re-contamination. The crystal growth was verified with precursors produced from powder with natural Te isotopic composition, and two small-size (20x20x10 mm) samples were tested at a sea-level laboratory showing high bolometric and spectrometric performance together with acceptable $^{210}$Po content (below 10 mBq/kg). This growth method was then applied for the production of six large cubic $^{130}$TeO$_2$ crystals and 4 of them were taken randomly to be characterized at the Canfranc underground laboratory, in the CROSS-dedicated low-background cryogenic facility. Two $^{130}$TeO$_2$ samples were coated with a thin, $O$(100 nm), metal film in form of Al layer (on 4 sides) or AlPd grid (on a single side) to investigate the possibility to tag surface events by pulse-shape discrimination. Similarly to the small natural precursors, large-volume $^{130}$TeO$_2$ bolometers show high performance and even better internal purity ($^{210}$Po activity $\sim$ 1 mBq/kg, while activities of $^{228}$Th and $^{226}$Ra are below 0.01 mBq/kg), satisfying requirements for the CROSS and, potentially, next-generation experiments., Comment: Submitted to JINST; 22 pages, 11 figures, 4 tables
- Published
- 2024
11. A novel mechanical design of a bolometric array for the CROSS double-beta decay experiment
- Author
-
Auguste, D., Barabash, A. S., Berest, V., Bergé, L., Calvo-Mozota, J. M., Carniti, P., Chapellier, M., Dafinei, I., Danevich, F. A., Dixon, T., Dumoulin, L., Ferri, F., Gallas, A., Giuliani, A., Gotti, C., Gras, P., Ianni, A., Imbert, L., Khalife, H., Kobychev, V. V., Konovalov, S. I., Loaiza, P., de Marcillac, P., Marnieros, S., Marrache-Kikuchi, C. A., Martinez, M., Nones, C., Olivieri, E., de Solórzano, A. Ortiz, Peinaud, Y., Pessina, G., Poda, D. V., Rosier, Ph., Scarpaci, J. A., Tretyak, V. I., Umatov, V. I., Zarytskyy, M. M., and Zolotarova, A.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The CROSS experiment will search for neutrinoless double-beta decay using a specific mechanical structure to hold thermal detectors. The design of the structure was tuned to minimize the background contribution, keeping an optimal detector performance. A single module of the structure holds two scintillating bolometers (with a crystal size of 45x45x45 mm and a Ge slab facing the crystal's upper side) in the Cu frame, allowing for a modular construction of a large-scale array. Two designs are released: the initial $Thick$ version contains around 15% of Cu over the crystal mass (lithium molybdate, LMO), while this ratio is reduced to ~6% in a finer ($Slim$) design. Both designs were tested extensively at aboveground (IJCLab, France) and underground (LSC, Spain) laboratories. In particular, at LSC we used a pulse-tube-based CROSS facility to operate a 6-crystal array of LMOs enriched/depleted in $^{100}$Mo. The tested LMOs show high spectrometric performance in both designs; notably, the measured energy resolution is 5--7 keV FWHM at 2615 keV $\gamma$s, nearby the Q-value of $^{100}$Mo (3034 keV). Due to the absence of a reflective cavity around LMOs, a low scintillation signal is detected by Ge bolometers: ~0.3 keV (150 photons) for 1-MeV $\gamma$($\beta$) LMO-event. Despite that, an acceptable separation between $\alpha$ and $\gamma$($\beta$) events is achieved with most devices. The highest efficiency is reached with light detectors in the $Thick$ design thanks to a lower baseline noise width (0.05--0.09 keV RMS) when compared to that obtained in the $Slim$ version (0.10--0.35 keV RMS). Given the pivotal role of bolometric photodetectors for particle identification and random coincidences rejection, we will use the structure here described with upgraded light detectors, featuring thermal signal amplification via the Neganov-Trofimov-Luke effect, as also demonstrated in the present work., Comment: Submitted to JINST; 31 pages, 16 figures, 5 tables
- Published
- 2024
12. JUNO Sensitivity to Invisible Decay Modes of Neutrons
- Author
-
JUNO Collaboration, Abusleme, Angel, Adam, Thomas, Adamowicz, Kai, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blake, Iwan, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Calvez, Steven, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Xin, Chen, Yiming, Chen, Yixue, Chen, Yu, Chen, Zelin, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chou, Po-Lin, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Cui, Chenyang, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Duan, Yujie, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fedoseev, Dmitry, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Fritsch, Fritsch, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guizzetti, Rosa Maria, Guo, Cong, Guo, Wanlei, Hagner, Caren, Han, Hechong, Han, Ran, Han, Yang, He, Jinhong, He, Miao, He, Wei, He, Xinhai, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jun, Hu, Peng, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Shengheng, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Guangzheng, Jiang, Wei, Jiang, Xiaoshan, Jiang, Xiaozhao, Jiang, Yixuan, Jing, Xiaoping, Jollet, Cécile, Kang, Li, Karaparabil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kumaran, Sindhujha, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Lai, Haojing, Landini, Cecilia, Leblanc, Sébastien, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Hongjian, Li, Huang, Li, Jiajun, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Shuo, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, An-An, Liang, Hao, Liao, Jiajun, Liao, Yilin, Liao, Yuzhong, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hongyang, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Loi, Lorenzo, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Meishu, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malabarba, Marco, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Reveco, Cristobal Morales, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parker, George, Parmeggiano, Sergio, Patsias, Achilleas, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Percalli, Elisa, Perrin, Willy, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Reina, Gioele, Ren, Bin, Ren, Jie, Ren, Yuhan, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Shao, Junyu, Sharov, Vladislav, Shi, Hexi, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Strizh, Michail, Studenikin, Alexander, Su, Aoqi, Su, Jun, Sun, Guangbao, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Takenaka, Akira, Tan, Xiaohan, Tang, Jian, Tang, Jingzhe, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Triossi, Andrea, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Hanwen, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Mingyuan, Wang, Qianchuan, Wang, Ruiguang, Wang, Sibo, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wu, Chengxin, Wu, Diru, Wu, Qun, Wu, Yinhui, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xian, Shishen, Xiang, Ziqian, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yijun, Xie, Yuguang, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jiayang, Xu, Jilei, Xu, Jing, Xu, Jinghuan, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Fengfan, Yang, Jie, Yang, Lei, Yang, Pengfei, Yang, Xiaoyu, Yang, Yifan, Yang, Yixiang, Yang, Zekun, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zamogilnyi, Kirill, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Hangchang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Junwei, Zhang, Lei, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yibing, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zhao, Tianhao, Zheng, Hua, Zheng, Yangheng, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhou, Xing, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
We explore the bound neutrons decay into invisible particles (e.g., $n\rightarrow 3 \nu$ or $nn \rightarrow 2 \nu$) in the JUNO liquid scintillator detector. The invisible decay includes two decay modes: $ n \rightarrow { inv} $ and $ nn \rightarrow { inv} $. The invisible decays of $s$-shell neutrons in $^{12}{\rm C}$ will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino $\bar{\nu}_e$, natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are $\tau/B( n \rightarrow { inv} ) > 5.0 \times 10^{31} \, {\rm yr}$ and $\tau/B( nn \rightarrow { inv} ) > 1.4 \times 10^{32} \, {\rm yr}$., Comment: 28 pages, 7 figures, 4 tables
- Published
- 2024
13. Searching for Beyond the Standard Model physics using the improved description of $^{100}$Mo $2\nu\beta\beta$ decay spectral shape with CUPID-Mo
- Author
-
Augier, C., Barabash, A. S., Bellini, F., Benato, G., Beretta, M., Bergé, L., Billard, J., Borovlev, Yu. A., Cardani, L., Casali, N., Cazes, A., Celi, E., Chapellier, M., Chiesa, D., Dafinei, I., Danevich, F. A., De Jesus, M., Dixon, T., Dumoulin, L., Eitel, K., Ferri, F., Fujikawa, B. K., Gascon, J., Gironi, L., Giuliani, A., Grigorieva, V. D., Gros, M., Helis, D. L., Huang, H. Z., Huang, R., Imbert, L., Juillard, A., Khalife, H., Kleifges, M., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Kotila, J., Loaiza, P., Ma, L., Makarov, E. P., de Marcillac, P., Mariam, R., Marini, L., Marnieros, S., Navick, X. F., Nones, C., Norman, E. B., Olivieri, E., Ouellet, J. L., Pagnanini, L., Pattavina, L., Paul, B., Pavan, M., Peng, H., Pessina, G., Pirro, S., Poda, D. V., Polischuk, O. G., Pozzi, S., Previtali, E., Redon, Th., Rojas, A., Rozov, S., Sanglard, V., Scarpaci, J. A., Schmidt, B., Shen, Y., Shlegel, V. N., Šimkovic, F., Singh, V., Tomei, C., Tretyak, V. I., Umatov, V. I., Vagneron, L., Velázquez, M., War, B., Welliver, B., Winslow, L., Xue, M., Yakushev, E., Zarytskyy, M., and Zolotarova, A. S.
- Subjects
Nuclear Experiment - Abstract
The current experiments searching for neutrinoless double-$\beta$ ($0\nu\beta\beta$) decay also collect large statistics of Standard Model allowed two-neutrino double-$\beta$ ($2\nu\beta\beta$) decay events. These can be used to search for Beyond Standard Model (BSM) physics via $2\nu\beta\beta$ decay spectral distortions. $^{100}$Mo has a natural advantage due to its relatively short half-life, allowing higher $2\nu\beta\beta$ decay statistics at equal exposures compared to the other isotopes. We demonstrate the potential of the dual read-out bolometric technique exploiting a $^{100}$Mo exposure of 1.47 kg $\times$ y, acquired in the CUPID-Mo experiment at the Modane underground laboratory (France). We set limits on $0\nu\beta\beta$ decays with the emission of one or more Majorons, on $2\nu\beta\beta$ decay with Lorentz violation, and $2\nu\beta\beta$ decay with a sterile neutrino emission. In this analysis, we investigate the systematic uncertainty induced by modeling the $2\nu\beta\beta$ decay spectral shape parameterized through an improved model, an effect never considered before. This work motivates searches for BSM processes in the upcoming CUPID experiment, which will collect the largest amount of $2\nu\beta\beta$ decay events among the next-generation experiments.
- Published
- 2024
14. Plant Translocations in France: Identifying Gaps between Knowledge, Practice and Perception by Conservation Actors
- Author
-
Julien, Margaux, Ducrettet, Juliette, Diallo, Mohamed, Imbert, Eric, Colas, Bruno, and Schatz, Bertrand
- Published
- 2024
- Full Text
- View/download PDF
15. Formation of linear planform chimneys controlled by preferential hydrocarbon leakage and anisotropic stresses in faulted fine-grained sediments, offshore Angola
- Author
-
S. Ho, M. Hovland, J.-P. Blouet, A. Wetzel, P. Imbert, and D. Carruthers
- Subjects
Geology ,QE1-996.5 ,Stratigraphy ,QE640-699 - Abstract
A new type of gas chimney exhibiting an unconventional linear planform is found. These chimneys are termed Linear Chimneys, which have been observed in 3-D seismic data offshore of Angola. Linear Chimneys occur parallel to adjacent faults, often within preferentially oriented tier-bound fault networks of diagenetic origin (also known as anisotropic polygonal faults, PFs), in salt-deformational domains. These anisotropic PFs are parallel to salt-tectonic-related structures, indicating their submission to horizontal stress perturbations generated by the latter. Only in areas with these anisotropic PF arrangements do chimneys and their associated gas-related structures, such as methane-derived authigenic carbonates and pockmarks, have linear planforms. In areas with the classic isotropic polygonal fault arrangements, the stress state is isotropic, and gas expulsion structures of the same range of sizes exhibit circular geometry. These events indicate that chimney's linear planform is heavily influenced by stress anisotropy around faults. The initiation of polygonal faulting occurred 40 to 80 m below the present day seafloor and predates Linear Chimney formation. The majority of Linear Chimneys nucleated in the lower part of the PF tier below the impermeable portion of fault planes and a regional impermeable barrier within the PF tier. The existence of polygonal fault-bound traps in the lower part of the PF tier is evidenced by PF cells filled with gas. These PF gas traps restricted the leakage points of overpressured gas-charged fluids along the lower portion of PFs, hence controlling the nucleation sites of chimneys. Gas expulsion along the lower portion of PFs preconfigured the spatial organisation of chimneys. Anisotropic stress conditions surrounding tectonic and anisotropic polygonal faults coupled with the impermeability of PFs determined the directions of long-term gas migration and linear geometries of chimneys. Methane-related carbonates that precipitated above Linear Chimneys inherited the same linear planform geometry, and both structures record the timing of gas leakage and palaeo-stress state; thus, they can be used as a tool to reconstruct orientations of stress in sedimentary successions. This study demonstrates that overpressure hydrocarbon migration via hydrofracturing may be energetically more favourable than migration along pre-existing faults.
- Published
- 2018
- Full Text
- View/download PDF
16. Fundamental solutions to Kolmogorov-Fokker-Planck equations with rough coefficients: existence, uniqueness, upper estimates
- Author
-
Auscher, Pascal, Imbert, Cyril, and Niebel, Lukas
- Subjects
Mathematics - Analysis of PDEs - Abstract
We show the existence and uniqueness of fundamental solution operators to Kolmo\-gorov-Fokker-Planck equations with rough (measurable) coefficients and local or integral diffusion on finite and infinite time strips. In the local case, that is to say when the diffusion operator is of differential type, we prove $\L^2$ decay using Davies' method and the conservation property. We also prove that the existence of a generalized fundamental solution with the expected pointwise Gaussian upper bound is equivalent to Moser's $\L^2-\L^\infty$ estimates for local weak solutions to the equation and its adjoint. When coefficients are real, this gives the existence and uniqueness of such a generalized fundamental solution and a new and natural way to obtain pointwise decay., Comment: Revision following the referee's suggestion. Edition of the presentation of the homogeneous Sobolev norms for clarity. Most changes are in Section 2
- Published
- 2024
17. Weak solutions to Kolmogorov-Fokker-Planck equations: regularity, existence and uniqueness
- Author
-
Auscher, Pascal, Imbert, Cyril, and Niebel, Lukas
- Subjects
Mathematics - Analysis of PDEs - Abstract
In this article, we establish embeddings {\`a} la Lions and transfer of regularity {\`a} la Bouchut for a large scale of kinetic spaces. We use them to identify a notion of weak solutions to Kolmogorov-Fokker-Planck equations with (local or integral) diffusion and rough (measurable) coefficients under minimal requirements. We prove their existence and uniqueness for a large class of source terms, first in full space for the time, position and velocity variables and then for the kinetic Cauchy problem on infinite and finite time intervals., Comment: 40 pages, submitted. A correction to the argument in Theorem 6.7 and the corresponding argument in Section 7. Statements unchanged. Some typos eliminated
- Published
- 2024
18. Metatranscriptomics sheds light on the links between the functional traits of fungal guilds and ecological processes in forest soil ecosystems
- Author
-
Auer, Lucas, Buée, Marc, Fauchery, Laure, Lombard, Vincent, Barry, Kerry W, Clum, Alicia, Copeland, Alex, Daum, Chris, Foster, Brian, LaButti, Kurt, Singan, Vasanth, Yoshinaga, Yuko, Martineau, Christine, Alfaro, Manuel, Castillo, Federico J, Imbert, J Bosco, Ramírez, Lucia, Castanera, Raúl, Pisabarro, Antonio G, Finlay, Roger, Lindahl, Björn, Olson, Ake, Séguin, Armand, Kohler, Annegret, Henrissat, Bernard, Grigoriev, Igor V, and Martin, Francis M
- Subjects
Microbiology ,Biological Sciences ,Ecology ,Genetics ,Life on Land ,Forests ,Fungi ,Soil Microbiology ,Transcriptome ,Mycorrhizae ,Gene Expression Profiling ,Gene Expression Regulation ,Fungal ,Nitrogen ,Soil ,Ecosystem ,RNA ,Messenger ,forest soil ,functional traits ,fungal guilds ,metatranscriptomics ,organic matter degradation ,Agricultural and Veterinary Sciences ,Plant Biology & Botany ,Plant biology ,Climate change impacts and adaptation ,Ecological applications - Abstract
Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.
- Published
- 2024
19. EANM perspectives for CZT SPECT in brain applications
- Author
-
Verger, Antoine, Cecchin, Diego, Guedj, Eric, Albert, Nathalie L, Brendel, Matthias, Fraioli, Francesco, Tolboom, Nelleke, Traub-Weidinger, Tatjana, Yakushev, Igor, Van Weehaeghe, Donatienne, Fernandez, Pablo Aguiar, Garibotto, Valentina, and Imbert, Laetitia
- Published
- 2024
- Full Text
- View/download PDF
20. EANM position paper on challenges and opportunities of full-ring 360° CZT bone imaging: it’s time to let go of planar whole-body bone imaging
- Author
-
Graham, Richard, Morland, David, Cade, Sarah, Imbert, Laetitia, Panagiotidis, Emmanouil, Kurth, Jens, Paycha, Frédéric, and Van den Wyngaert, Tim
- Published
- 2024
- Full Text
- View/download PDF
21. Development of 3D gingival in vitro models using primary gingival cells
- Author
-
Plaza, Christelle, Capallere, Christophe, Meyrignac, Celine, Arcioni, Marianne, and Imbert, Isabelle
- Published
- 2024
- Full Text
- View/download PDF
22. Multi-Calorimetry in Light-based Neutrino Detectors
- Author
-
Cabrera, Anatael, Han, Yang, Calvez, Steven, Chauveau, Emmanuel, Chen, Hanyi, de Kerret, Hervé, Dusini, Stefano, Grassi, Marco, Imbert, Leonard, Li, Jiajun, Mandujano, Roberto Carlos, Navas-Nicolás, Diana, Nunokawa, Hiroshi, Obolensky, Michel, Ochoa-Ricoux, Juan Pedro, Pronost, Guillaume, Viaud, Benoit, and Yermia, Frédéric
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
Neutrino detectors are among the largest photon detection instruments, built to capture scarce photons upon energy deposition. Many discoveries in neutrino physics, including the neutrino itself, are inseparable from the advances in photon detection technology, particularly in photo-sensors and readout electronics, to yield ever higher precision and richer detection information. The measurement of the energy of neutrinos, referred to as calorimetry, can be achieved in two distinct approaches: photon-counting, where single-photon can be counted digitally, and photon-integration, where multi-photons are aggregated and estimated via analogue signals. The energy is pursued today to reach permille level systematics control precision in ever-vast volumes, exemplified by experiments like JUNO. The unprecedented precision brings to the foreground the systematics due to calorimetric response entanglements in energy, position and time that were negligible in the past, thus driving further innovation in calorimetry. This publication describes a novel articulation that detectors can be endowed with multiple photon detection systems. This multi-calorimetry approach opens the notion of dual-calorimetry detector, consisting of both photon-counting and photon-integration systems, as a cost-effective evolution from the single calorimetry setups used over several decades for most experiments so far. The dual-calorimetry design exploits unique response synergies between photon-counting and photon-integration systems, including correlations and cancellations in calorimetric responses, to maximise the mitigation of response entanglements, thereby yielding permille-level high-precision calorimetry.
- Published
- 2023
- Full Text
- View/download PDF
23. Partial regularity in time for the space-homogeneous Boltzmann equation with very soft potentials
- Author
-
Golse, François, Imbert, Cyril, and Silvestre, Luis
- Subjects
Mathematics - Analysis of PDEs - Abstract
We prove that the set of singular times for weak solutions of the homogeneous Boltzmann equation with very soft potentials constructed as in Villani (1998) has Hausdorff dimension at most $\frac{|\gamma+2s|}{2s}$ with $\gamma \in [-4s,-2s)$ and $s \in (0,1)$.
- Published
- 2023
24. JUNO sensitivity to invisible decay modes of neutrons
- Author
-
Abusleme, Angel, Adam, Thomas, Adamowicz, Kai, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blake, Iwan, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Calvez, Steven, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Xin, Chen, Yiming, Chen, Yixue, Chen, Yu, Chen, Zelin, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chou, Po-Lin, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Lorenzo, Selma Conforti Di, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Cui, Chenyang, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Duan, Yujie, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fedoseev, Dmitry, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Fritsch, Fritsch, Gan, Haonan, Gao, Feng, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guizzetti, Rosa Maria, Guo, Cong, Guo, Wanlei, Hagner, Caren, Han, Hechong, Han, Ran, Han, Yang, He, Jinhong, He, Miao, He, Wei, He, Xinhai, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jun, Hu, Peng, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Shengheng, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Guangzheng, Jiang, Wei, Jiang, Xiaoshan, Jiang, Xiaozhao, Jiang, Yixuan, Jing, Xiaoping, Jollet, Cécile, Kang, Li, Karaparabil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kumaran, Sindhujha, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Lai, Haojing, Landini, Cecilia, Leblanc, Sébastien, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Hongjian, Li, Huang, Li, Jiajun, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Shuo, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, An-An, Liang, Hao, Liang, Hao, Liao, Jiajun, Liao, Yilin, Liao, Yuzhong, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hongyang, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Loi, Lorenzo, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Meishu, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Mai, Jingyu, Malabarba, Marco, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Reveco, Cristobal Morales, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parker, George, Parmeggiano, Sergio, Patsias, Achilleas, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Percalli, Elisa, Perrin, Willy, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Reina, Gioele, Ren, Bin, Ren, Jie, Ren, Yuhan, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Shao, Junyu, Sharov, Vladislav, Shi, Hexi, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Strizh, Michail, Studenikin, Alexander, Su, Aoqi, Su, Jun, Su, Jun, Sun, Guangbao, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Takenaka, Akira, Tan, Xiaohan, Tang, Jian, Tang, Jingzhe, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Triossi, Andrea, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, Sturm, Katharina von, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Hanwen, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Meng, Wang, Mingyuan, Wang, Qianchuan, Wang, Ruiguang, Wang, Sibo, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wu, Chengxin, Wu, Diru, Wu, Qun, Wu, Yinhui, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xian, Shishen, Xiang, Ziqian, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yijun, Xie, Yuguang, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jiayang, Xu, Jilei, Xu, Jing, Xu, Jinghuan, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Fengfan, Yang, Jie, Yang, Lei, Yang, Pengfei, Yang, Xiaoyu, Yang, Yifan, Yang, Yixiang, Yang, Zekun, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zamogilnyi, Kirill, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Hangchang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Junwei, Zhang, Lei, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yibing, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zhao, Tianhao, Zheng, Hua, Zheng, Yangheng, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhou, Xing, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, and Zou, Jiaheng
- Published
- 2025
- Full Text
- View/download PDF
25. PFKFB3-dependent redox homeostasis and DNA repair support cell survival under EGFR-TKIs in non-small cell lung carcinoma
- Author
-
Lypova, Nadiia, Dougherty, Susan M., Clem, Brian F., Feng, Jing, Yin, Xinmin, Zhang, Xiang, Li, Xiaohong, Chesney, Jason A., and Imbert-Fernandez, Yoannis
- Published
- 2024
- Full Text
- View/download PDF
26. Multi-calorimetry in light-based neutrino detectors
- Author
-
Cabrera, Anatael, Han, Yang, Calvez, Steven, Chauveau, Emmanuel, Chen, Hanyi, de Kerret, Hervé, Dusini, Stefano, Grassi, Marco, Imbert, Leonard, Li, Jiajun, Mandujano, Roberto Carlos, Navas-Nicolás, Diana, Nunokawa, Hiroshi, Obolensky, Michel, Ochoa-Ricoux, Juan Pedro, Pronost, Guillaume, Viaud, Benoit, and Yermia, Frédéric
- Published
- 2024
- Full Text
- View/download PDF
27. 360° CZT-SPECT/CT cameras: 99mTc- and 177Lu-phantom-based evaluation under clinical conditions
- Author
-
Hoog, Christopher, Koulibaly, Pierre-Malick, Sas, Nicolas, Imbert, Laetitia, Le Rouzic, Gilles, Popoff, Romain, Badel, Jean-Noël, and Ferrer, Ludovic
- Published
- 2024
- Full Text
- View/download PDF
28. T cell immuno-phenotyping : a source of predictive biomarkers for autoimmune hepatitis relapse
- Author
-
Imbert, Astrid, Gavlovsky, Pierre-Jean, Judor, Jean-Paul, Bardou-Jacquet, Edouard, Elkrief, Laure, Lannes, Adrien, Silvain, Christine, Schnee, Mathieu, Tanne, Florence, Chevalier, Caroline, Vavasseur, Fabienne, Khaldi, Marion, Brouard, Sophie, Mosnier, Jean-François, Gournay, Jérôme, Conchon, Sophie, and Renand, Amédée
- Published
- 2024
- Full Text
- View/download PDF
29. Local regularity for the space-homogenous Landau equation with very soft potentials: Local regularity for the space-homogenous...
- Author
-
Golse, François, Imbert, Cyril, Ji, Sehyun, and Vasseur, Alexis F.
- Published
- 2024
- Full Text
- View/download PDF
30. North–south pathways, emerging variants, and high climate suitability characterize the recent spread of dengue virus serotypes 2 and 3 in the Dominican Republic
- Author
-
Miguel, Isaac, Feliz, Edwin P., Agramonte, Robinson, Martinez, Pedro V., Vergara, Carlos, Imbert, Yvonne, De la Cruz, Lucia, de Castro, Nurys, Cedano, Odalis, De la Paz, Yamilka, Fonseca, Vagner, Santiago, Gilberto A., Muñoz-Jordán, Jorge L., Peguero, Armando, Paulino-Ramírez, Robert, Grubaugh, Nathan D., de Filippis, Ana Maria Bispo, Alcantara, Luiz Carlos Junior, Rico, Jairo Mendez, Lourenço, José, Franco, Leticia, and Giovanetti, Marta
- Published
- 2024
- Full Text
- View/download PDF
31. Sampling and processing matter in airway microbiota discovery
- Author
-
Imbert, Sébastien, Revers, Mathilde, Enaud, Raphaël, Orieux, Arthur, Delhaes, Laurence, and Prével, Renaud
- Published
- 2024
- Full Text
- View/download PDF
32. Lower airway microbiota compositions differ between influenza, COVID-19 and bacteria-related acute respiratory distress syndromes
- Author
-
Imbert, Sébastien, Revers, Mathilde, Enaud, Raphaël, Orieux, Arthur, Camino, Adrian, Massri, Alexandre, Villeneuve, Laurent, Carrié, Cédric, Petit, Laurent, Boyer, Alexandre, Berger, Patrick, Gruson, Didier, Delhaes, Laurence, and Prével, Renaud
- Published
- 2024
- Full Text
- View/download PDF
33. Application of PET imaging delta radiomics for predicting progression-free survival in rare high-grade glioma
- Author
-
Ahrari, Shamimeh, Zaragori, Timothée, Zinsz, Adeline, Oster, Julien, Imbert, Laetitia, and Verger, Antoine
- Published
- 2024
- Full Text
- View/download PDF
34. Precise 113Cd βgA decay spectral shape measurement and interpretation in terms of possible βgA quenching
- Author
-
Bandac, I., Bergé, L., Calvo-Mozota, J. M., Carniti, P., Chapellier, M., Danevich, F. A., Dixon, T., Dumoulin, L., Ferri, F., Giuliani, A., Gotti, C., Gras, Ph., Helis, D. L., Imbert, L., Khalife, H., Kobychev, V. V., Kostensalo, J., Loaiza, P., de Marcillac, P., Marnieros, S., Marrache-Kikuchi, C. A., Martinez, M., Nones, C., Olivieri, E., de Solórzano, A. Ortiz, Pessina, G., Poda, D. V., Scarpaci, J. A., Suhonen, J., Tretyak, V. I., Zarytskyy, M., and Zolotarova, A.
- Published
- 2024
- Full Text
- View/download PDF
35. Multi-calorimetry in light-based neutrino detectors
- Author
-
Anatael Cabrera, Yang Han, Steven Calvez, Emmanuel Chauveau, Hanyi Chen, Hervé de Kerret, Stefano Dusini, Marco Grassi, Leonard Imbert, Jiajun Li, Roberto Carlos Mandujano, Diana Navas-Nicolás, Hiroshi Nunokawa, Michel Obolensky, Juan Pedro Ochoa-Ricoux, Guillaume Pronost, Benoit Viaud, and Frédéric Yermia
- Subjects
Neutrino Detectors and Telescopes (experiments) ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Neutrino detectors are among the largest photon detection instruments, built to capture scarce photons upon energy deposition. Many discoveries in neutrino physics, including the neutrino itself, are inseparable from the advances in photon detection technology, particularly in photo-sensors and readout electronics, to yield ever higher precision and richer detection information. The measurement of the energy of neutrinos, referred to as calorimetry, can be achieved in two distinct approaches: photon-counting, where single-photon can be counted digitally, and photon-integration, where multi-photons are aggregated and estimated via analogue signals. The energy is pursued today to reach permille level systematics control precision in ever-vast volumes, exemplified by experiments like JUNO. The unprecedented precision brings to the foreground the systematics due to calorimetric response entanglements in energy, position and time that were negligible in the past, thus driving further innovation in calorimetry. This publication describes a novel articulation that detectors can be endowed with multiple photon detection systems. This multi-calorimetry approach opens the notion of dual-calorimetry detector, consisting of both photon-counting and photon-integration systems, as a cost-effective evolution from the single-calorimetry setups used over several decades for most experiments so far. The dual-calorimetry design exploits unique response synergies between photon-counting and photon-integration systems, including correlations and cancellations in calorimetric responses, to maximise the mitigation of response entanglements, thereby yielding permille-level high-precision calorimetry.
- Published
- 2024
- Full Text
- View/download PDF
36. Coercive Hamilton-Jacobi equations in domains: the twin blow-ups method
- Author
-
Forcadel, Nicolas, Imbert, Cyril, and Monneau, Regis
- Subjects
Mathematics - Analysis of PDEs - Abstract
In this note, we consider an evolution coercive Hamilton-Jacobi equation posed in a domain and supplemented with a boundary condition. We are interested in proving a comparison principle in the case where the time and the (normal) gradient variables are strongly coupled at the boundary. We elaborate on a method introduced by P.-L. Lions and P. Souganidis (Atti Accad. Naz. Lincei, 2017) to extend their comparison principle to more general boundary conditions and to Hamiltonians that are not globally Lipschitz continuous in the time variable. Their argument relies on a single blow-up procedure after rescaling the semi-solutions to be compared. We refer to our technique as the twin blow-ups method since two blow-ups are performed simultaneously, one for each variable of the doubling variable method. The Lipschitz regularity of the regularized subsolution provides a key Lipschitz inequality satisfied by the two blow-up limits, that are a priori allowed to be infinite. For expository reasons, the result is presented here in the framework of space dimension one and the general case is treated in a companion paper.
- Published
- 2023
37. Non-convex coercive Hamilton-Jacobi equations: Guerand's relaxation revisited
- Author
-
Forcadel, Nicolas, Imbert, Cyril, and Monneau, Regis
- Subjects
Mathematics - Analysis of PDEs - Abstract
This work is concerned with Hamilton-Jacobi equations of evolution type posed in domains and supplemented with boundary conditions. Hamiltonians are coercive but are neither convex nor quasiconvex. We analyse boundary conditions when understood in the sense of viscosity solutions. This analysis is based on the study of boundary conditions of evolution type. More precisely, we give a new formula for the relaxed boundary conditions derived by J. Guerand (J. Differ. Equations, 2017). This new point of view unveils a connection between the relaxation operator and the classical Godunov flux from the theory of conservation laws. We apply our methods to two classical boundary value problems. It is shown that the relaxed Neumann boundary condition is expressed in terms of Godunov's flux while the relaxed Dirichlet boundary condition reduces to an obstacle problem at the boundary associated with the lower non-increasing envelope of the Hamiltonian.
- Published
- 2023
- Full Text
- View/download PDF
38. Real-time Monitoring for the Next Core-Collapse Supernova in JUNO
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Morton-Blake, Iwan, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chatrabhuti, Auttakit, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhangming, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chin, Yen-Ting, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jafar, Arshak, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Labit, Loïc, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Jiajun, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lu, Xianguo, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miramonti, Lino, Mohan, Nikhil, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Qu, Manhao, Qu, Zhenning, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rientong, Komkrit, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sangka, Anut, Sava, Giuseppe, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Aoqi, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Venettacci, Carlo, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Li, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wei, Yuehuan, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Fei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Xunjie, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Fanrui, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, ZHANG, Lei, Zhang, Mohan, Zhang, Peng, Zhang, Ping, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, and Züfle, Jan
- Subjects
High Energy Physics - Experiment ,Astrophysics - High Energy Astrophysical Phenomena ,High Energy Physics - Phenomenology - Abstract
The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China. The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage. Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios. The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN., Comment: 24 pages, 9 figures, accepted for the publication at JCAP
- Published
- 2023
39. Searching for beyond the Standard Model physics using the improved description of 100Mo 2νββ decay spectral shape with CUPID-Mo
- Author
-
Augier, C, Barabash, AS, Bellini, F, Benato, G, Beretta, M, Bergé, L, Billard, J, Borovlev, Yu A, Cardani, L, Casali, N, Cazes, A, Celi, E, Chapellier, M, Chiesa, D, Dafinei, I, Danevich, FA, De Jesus, M, Dixon, T, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, BK, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, VD, Gros, M, Helis, DL, Huang, HZ, Huang, R, Imbert, L, Juillard, A, Khalife, H, Kleifges, M, Kobychev, VV, Kolomensky, Yu G, Konovalov, SI, Kotila, J, Loaiza, P, Ma, L, Makarov, EP, de Marcillac, P, Mariam, R, Marini, L, Marnieros, S, Navick, XF, Nones, C, Norman, EB, Olivieri, E, Ouellet, JL, Pagnanini, L, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, DV, Polischuk, OG, Pozzi, S, Previtali, E, Redon, Th, Rojas, A, Rozov, S, Sanglard, V, Scarpaci, JA, Schmidt, B, Shen, Y, Shlegel, VN, Šimkovic, F, Singh, V, Tomei, C, Tretyak, VI, Umatov, VI, Vagneron, L, Velázquez, M, Ware, B, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zarytskyy, M, and Zolotarova, AS
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The current experiments searching for neutrinoless double-β (0νββ) decay also collect large statistics of Standard Model allowed two-neutrino double-β (2νββ) decay events. These can be used to search for Beyond Standard Model (BSM) physics via 2νββ decay spectral distortions. 100Mo has a natural advantage due to its relatively short half-life, allowing higher 2νββ decay statistics at equal exposures compared to the other isotopes. We demonstrate the potential of the dual read-out bolometric technique exploiting a 100Mo exposure of 1.47 kg × years, acquired in the CUPID-Mo experiment at the Modane underground laboratory (France). We set limits on 0νββ decays with the emission of one or more Majorons, on 2νββ decay with Lorentz violation, and 2νββ decay with a sterile neutrino emission. In this analysis, we investigate the systematic uncertainty induced by modeling the 2νββ decay spectral shape parameterized through an improved model, an effect never considered before. This work motivates searches for BSM processes in the upcoming CUPID experiment, which will collect the largest amount of 2νββ decay events among the next-generation experiments.
- Published
- 2024
40. The role of [18 F]FDOPA PET as an adjunct to conventional MRI in the diagnosis of aggressive glial lesions
- Author
-
Zinsz, Adeline, Pouget, Celso, Rech, Fabien, Taillandier, Luc, Blonski, Marie, Amlal, Samir, Imbert, Laetitia, Zaragori, Timothée, and Verger, Antoine
- Published
- 2024
- Full Text
- View/download PDF
41. Enabling site-specific NMR investigations of therapeutic Fab using a cell-free based isotopic labeling approach: application to anti-LAMP1 Fab
- Author
-
Giraud, Arthur, Imbert, Lionel, Favier, Adrien, Henot, Faustine, Duffieux, Francis, Samson, Camille, Frances, Oriane, Crublet, Elodie, and Boisbouvier, Jérôme
- Published
- 2024
- Full Text
- View/download PDF
42. Preanalytical variables influencing the interpretation and reporting of biological tests on blood samples of living and deceased donors for human body materials
- Author
-
Padalko, Elizaveta, Colenbie, Luc, Delforge, Alain, Ectors, Nadine, Guns, Johan, Imbert, Romain, Jansens, Hilde, Pirnay, Jean-Paul, Rodenbach, Marie-Pierre, Van Riet, Ivan, Vansteenbrugge, Anne, Verbeken, Gilbert, Baltes, Muriel, and Beele, Hilde
- Published
- 2024
- Full Text
- View/download PDF
43. Test of $^{116}$CdWO$_4$ and Li$_2$MoO$_4$ scintillating bolometers in the CROSS underground facility with upgraded detector suspension
- Author
-
Ahmine, A., Bandac, I. C., Barabash, A. S., Berest, V., Bergé, L., Calvo-Mozota, J. M., Carniti, P., Chapellier, M., Dafinei, I., Danevich, F. A., Dixon, T., Dumoulin, L., Ferri, F., Giuliani, A., Gotti, C., Gras, P., Helis, D. L., Ianni, A., Imbert, L., Khalife, H., Kobychev, V. V., Konovalov, S. I., Loaiza, P., de Marcillac, P., Marnieros, S., Marrache-Kikuchi, C. A., Martinez, M., Nones, C., Olivieri, E., de Solórzano, A. Ortiz, Peinaud, Y., Pessina, G., Poda, D. V., Redon, Th., Rosier, Ph., Scarpaci, J. A., Tretyak, V. I., Umatov, V. I., Velazquez, M., Zarytskyy, M. M., and Zolotarova, A.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
In preparation to the CROSS $2\beta$ decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditions and for comparing bolometric performance of an advanced Li2MoO4 crystal developed in the framework of the CLYMENE project, in view of next-generation double-beta decay experiments like CUPID. We cooled down detectors to 15 mK and achieved high performance for all tested devices. In particular both CWO-enr and LMO bolometers demonstrated the energy resolution of 6 keV FWHM for the 2.6 MeV gamma quanta, among the best for thermal detectors based on such compounds. The baseline noise resolution (FWHM) of the CWO-enr detector was improved by 2 keV, compared to the best previous measurement of this detector in the CROSS facility, while the noise of the Ge-based optical bolometer was improved by a factor 2, to 100 eV FWHM. Despite of the evident progress in the improving of noise conditions of the set-up, we see high-frequency harmonics of a pulse-tube induced noise, suggesting a noise pick-up by cabling. Another Ge light detector was assisted with the signal amplification exploiting the Neganov-Trofimov-Luke effect, which allowed to reach 20 eV FWHM noise resolution by applying 60 V electrode bias. Highly-efficient particle identification was achieved with both detectors, despite a low scintillation efficiency of the LMO material. The radiopurity level of the LMO crystal is rather high; only traces of 210Po and 226Ra were detected (0.1 mBq/kg each), while the 228Th activity is expected to be at least an order of magnitude lower, as well as a 40K activity is found to be < 6 mBq/kg., Comment: Prepared for submission to JINST, 26 pages, 8 figures, 2 tables
- Published
- 2023
44. Measurement of the $2\nu\beta\beta$ decay rate and spectral shape of $^{100}$Mo from the CUPID-Mo experiment
- Author
-
Augier, C., Barabash, A. S., Bellini, F., Benato, G., Beretta, 6 M., Berge, L., Billard, J., Borovlev, Yu. A., Cardani, L., Casali, N., Cazes, A., Celi, E., Chapellier, M., Chiesa, D., Dafinei, I., Danevich, F. A., De Jesus, M., Dixon, T., Dumoulin, L., Eitel, K., Ferri, F., Fujikawa, B. K., Gascon, J., Gironi, L., Giuliani, A., Grigorieva, V. D., Gros, M., Helis, D. L., Huang, H. Z., Huang, R., Imbert, L., Johnston, J., Juillard, A., Khalife, H., Kleifges, M., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Kotila, J., Loaiza, P., Ma, L., Makarov, E. P., de Marcillac, P., Mariam, R., Marini, L., Marnieros, S., Navick, X. -F., Nones, C., Norman, E. B., Olivieri, E., Ouellet, J. L., Pagnanini, L., Pattavina, L., Paul, B., Pavan, M., Peng, H., Pessina, G., Pirro, S., Poda, D. V., Polischuk, O. G., Pozzi, S., Previtali, E., Redon, Th., Rojas, A., Rozov, S., Sanglard, V., Scarpaci, J. A., Schmidt, B., Shen, Y., Shlegel, V. N., Simkovic, F., Singh, V., Tomei, C., Tretyak, V. I., Umatov, V. I., Vagneron, L., Velazquez, M., Ware, B., Welliver, B., Winslow, L., Xue, M., Yakushev, E., Zarytskyy, M., and Zolotarova, A. S.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Neutrinoless double beta decay ($0\nu\beta\beta$) is a yet unobserved nuclear process which would demonstrate Lepton Number violation, a clear evidence of beyond Standard Model physics. The process two neutrino double beta decay ($2\nu\beta\beta)$ is allowed by the Standard Model and has been measured in numerous experiments. In this letter, we report a measurement of $2\nu\beta\beta$ decay half-life of $^{100}$Mo to the ground state of $^{100}$Ru of $(7.07~\pm~0.02~\text{(stat.)}~\pm~0.11~\text{(syst.)})~\times~10^{18}$~yr by the CUPID-Mo experiment. With a relative precision of $\pm~1.6$ \% this is the most precise measurement to date of a $2\nu\beta\beta$ decay rate in $^{100}$Mo. In addition, we constrain higher-order corrections to the spectral shape which provides complementary nuclear structure information. We report a novel measurement of the shape factor $\xi_{3,1}=0.45~\pm 0.03~\text{(stat.)} \ \pm 0.05 \ \text{(syst.)}$, which is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of $2\nu\beta\beta$ decay., Comment: 8 pages, 5 figures
- Published
- 2023
45. The background model of the CUPID-Mo $0\nu\beta\beta$ experiment
- Author
-
Collaboration, CUPID-Mo, Augier, C., Barabash, A. S., Bellini, F., Benato, G., Beretta, M., Bergé, L., Billard, J., Borovlev, Yu. A., Cardani, L., Casali, N., Cazes, A., Celi, E., Chapellier, M., Chiesa, D., Dafinei, I., Danevich, F. A., De Jesus, M., de Marcillac, P., Dixon, T., Dumoulin, L., Eitel, K., Ferri, F., Fujikawa, B. K., Gascon, J., Gironi, L., Giuliani, A., Grigorieva, V. D., Gros, M., Helis, D. L., Huang, H. Z., Huang, R., Imbert, L., Johnston, J., Juillard, A., Khalife, H., Kleifges, M., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Kotila, J., Loaiza, P., Ma, L., Makarov, E. P., Mariam, R., Marini, L., Marnieros, S., Navick, X. F., Nones, C., Norman, E. B., Olivieri, E., Ouellet, J. L., Pagnanini, L., Pattavina, L., Pavan, M., Peng, H., Pessina, G., Pirro, S., Poda, D. V., Polischuk, O. G., Pozzi, S., Previtali, E., Redon, Th., Rojas, A., Rozov, S., Sanglard, V., Scarpaci, J. A., Schmidt, B., Shen, Y., Shlegel, V. N., Singh, V., Tomei, C., Tretyak, V. I., Umatov, V. I., Vagneron, L., Velázquez, M., Welliver, B., Winslow, L., Xue, M., Yakushev, E., Zarytskyy, M., and Zolotarova, A. S.
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
CUPID-Mo, located in the Laboratoire Souterrain de Modane (France), was a demonstrator for the next generation $0\nu\beta\beta$ decay experiment, CUPID. It consisted of an array of 20 enriched Li$_{2}$$ ^{100}$MoO$_4$ bolometers and 20 Ge light detectors and has demonstrated that the technology of scintillating bolometers with particle identification capabilities is mature. Furthermore, CUPID-Mo can inform and validate the background prediction for CUPID. In this paper, we present a detailed model of the CUPID-Mo backgrounds. This model is able to describe well the features of the experimental data and enables studies of the $2\nu\beta\beta$ decay and other processes with high precision. We also measure the radio-purity of the Li$_{2}$$^{100}$MoO$_4$ crystals which are found to be sufficient for the CUPID goals. Finally, we also obtain a background index in the region of interest of 3.7$^{+0.9}_{-0.8}$(stat)$^{+1.5}_{-0.7}$(syst)$\times10^{-3}$counts/$\Delta$E$_{FWHM}$/mol$_{iso}$/yr, the lowest in a bolometric $0\nu\beta\beta$ decay experiment.
- Published
- 2023
- Full Text
- View/download PDF
46. ChatGPT for Learning HCI Techniques: A Case Study on Interviews for Personas
- Author
-
Jose Barambones, Cristian Moral, Angelica de Antonio, Ricardo Imbert, Loic Martinez-Normand, and Elena Villalba-Mora
- Abstract
Before interacting with real users, developers must be proficient in human--computer interaction (HCI) so as not to exhaust user patience and availability. For that, substantial training and practice are required, but it is costly to create a variety of high-quality HCI training materials. In this context, chat generative pretrained transformer (ChatGPT) and other chatbots based on large language models (LLMs) offer an opportunity to generate training materials of acceptable quality without foregoing specific human characteristics present in real-world scenarios. Personas is a user-centered design method that encompasses fictitious but believable user archetypes to help designers understand and empathize with their target audience during product design. We conducted an exploratory study on the Personas technique, addressing the validity and believability of interviews designed by HCI trainers and answered by ChatGPT-simulated users, which can be used as training material for persona creation. Specifically, we employed ChatGPT to respond to interviews designed by user experience (UX) experts. Two groups, HCI professors and professionals, then evaluated the validity of the generated materials considering quality, usefulness, UX, and ethics. The results show that both groups rated the interviews as believable and helpful for Personas training. However, some concerns about response repetition and low response variability suggested the need for further research on improved prompt design in order to generate more diverse and well-developed responses. The findings of this study provide insight into how HCI trainers can use ChatGPT to help their students master persona creation skills before working with real users in real-world scenarios for the first time.
- Published
- 2024
- Full Text
- View/download PDF
47. Measurement of the 2νββ Decay Rate and Spectral Shape of Mo100 from the CUPID-Mo Experiment
- Author
-
Augier, C, Barabash, AS, Bellini, F, Benato, G, Beretta, M, Bergé, L, Billard, J, Borovlev, Yu A, Cardani, L, Casali, N, Cazes, A, Celi, E, Chapellier, M, Chiesa, D, Dafinei, I, Danevich, FA, De Jesus, M, Dixon, T, Dumoulin, L, Eitel, K, Ferri, F, Fujikawa, BK, Gascon, J, Gironi, L, Giuliani, A, Grigorieva, VD, Gros, M, Helis, DL, Huang, HZ, Huang, R, Imbert, L, Johnston, J, Juillard, A, Khalife, H, Kleifges, M, Kobychev, VV, Kolomensky, Yu G, Konovalov, SI, Kotila, J, Loaiza, P, Ma, L, Makarov, EP, de Marcillac, P, Mariam, R, Marini, L, Marnieros, S, Navick, X-F, Nones, C, Norman, EB, Olivieri, E, Ouellet, JL, Pagnanini, L, Pattavina, L, Paul, B, Pavan, M, Peng, H, Pessina, G, Pirro, S, Poda, DV, Polischuk, OG, Pozzi, S, Previtali, E, Redon, Th, Rojas, A, Rozov, S, Sanglard, V, Scarpaci, JA, Schmidt, B, Shen, Y, Shlegel, VN, Šimkovic, F, Singh, V, Tomei, C, Tretyak, VI, Umatov, VI, Vagneron, L, Velázquez, M, Ware, B, Welliver, B, Winslow, L, Xue, M, Yakushev, E, Zarytskyy, M, and Zolotarova, AS
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,CUPID-Mo Collaboration ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18} yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νββ decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νββ decay.
- Published
- 2023
48. A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat
- Author
-
CUPID collaboration, Alfonso, K., Armatol, A., Augier, C., Avignone III, F. T., Azzolini, O., Balata, M., Barabash, A. S., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Berest, V., Beretta, M., Bettelli, M., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C., Camilleri, J., Campani, A., Capelli, C., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Celi, E., Chang, C., Chiesa, D., Clemenza, M., Colantoni, I., Copello, S., Craft, E., Cremonesi, O., Creswick, R. J., Cruciani, A., D'Addabbo, A., D'Imperio, G., Dabagov, S., Dafinei, I., Danevich, F. A., De Jesus, M., de Marcillac, P., Dell'Oro, S., Di Domizio, S., Di Lorenzo, S., Dixon, T., Dompé, V., Drobizhev, A., Dumoulin, L., Fantini, G., Faverzani, M., Ferri, E., Ferri, F., Ferroni, F., Figueroa-Feliciano, E., Foggetta, L., Formaggio, J., Franceschi, A., Fu, C., Fu, S., Fujikawa, B. K., Gallas, A., Gascon, J., Ghislandi, S., Giachero, A., Gianvecchio, A., Girola, M., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Grant, C., Gras, P., Guillaumon, P. V., Gutierrez, T. D., Han, K., Hansen, E. V., Heeger, K. M., Helis, D. L., Huang, H. Z., Imbert, L., Johnston, J., Juillard, A., Karapetrov, G., Keppel, G., Khalife, H., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Kowalski, R., Langford, T., Lefevre, M., Liu, R., Liu, Y., Loaiza, P., Ma, L., Madhukuttan, M., Mancarella, F., Marini, L., Marnieros, S., Martinez, M., Maruyama, R. H., Mas, Ph., Mayer, D., Mazzitelli, G., Mei, Y., Milana, S., Morganti, S., Napolitano, T., Nastasi, M., Nikkel, J., Nisi, S., Nones, C., Norman, E. B., Novosad, V., Nutini, I., O'Donnell, T., Olivieri, E., Olmi, M., Ouellet, J. L., Pagan, S., Pagliarone, C., Pagnanini, L., Pattavina, L., Pavan, M., Peng, H., Pessina, G., Pettinacci, V., Pira, C., Pirro, S., Poda, D. V., Polischuk, O. G., Ponce, I., Pozzi, S., Previtali, E., Puiu, A., Quitadamo, S., Ressa, A., Rizzoli, R., Rosenfeld, C., Rosier, P., Scarpaci, J. A., Schmidt, B., Sharma, V., Shlegel, V. N., Singh, V., Sisti, M., Slocum, P., Speller, D., Surukuchi, P. T., Taffarello, L., Tomei, C., Torres, J. A., Tretyak, V. I., Tsymbaliuk, A., Velazquez, M., Vetter, K. J., Wagaarachchi, S. L., Wang, G., Wang, L., Wang, R., Welliver, B., Wilson, J., Wilson, K., Winslow, L. A., Xue, M., Yan, L., Yang, J., Yefremenko, V., Umatov, V. I., Zarytskyy, M. M., Zhang, J., Zolotarova, A., and Zucchelli, S.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70--90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained outstanding energy resolutions at the 356 keV line from a $^{133}$Ba source with one light detector achieving 0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when compared to $\gamma$ detectors of any technology in this energy range., Comment: Prepared for submission to JINST; 16 pages, 7 figures, and 1 table
- Published
- 2023
- Full Text
- View/download PDF
49. Twelve-crystal prototype of Li$_2$MoO$_4$ scintillating bolometers for CUPID and CROSS experiments
- Author
-
CUPID, collaborations, CROSS, Alfonso, K., Armatol, A., Augier, C., Avignone III, F. T., Azzolini, O., Balata, M., Bandac, I. C., Barabash, A. S., Bari, G., Barresi, A., Baudin, D., Bellini, F., Benato, G., Berest, V., Beretta, M., Bettelli, M., Biassoni, M., Billard, J., Boldrini, V., Branca, A., Brofferio, C., Bucci, C., Calvo-Mozota, J. M., Camilleri, J., Campani, A., Capelli, C., Capelli, S., Cappelli, L., Cardani, L., Carniti, P., Casali, N., Celi, E., Chang, C., Chiesa, D., Clemenza, M., Colantoni, I., Copello, S., Craft, E., Cremonesi, O., Creswick, R. J., Cruciani, A., D'Addabbo, A., D'Imperio, G., Dabagov, S., Dafinei, I., Danevich, F. A., De Jesus, M., de Marcillac, P., Dell'Oro, S., Di Domizio, S., Di Lorenzo, S., Dixon, T., Dompé, V., Drobizhev, A., Dumoulin, L., Fantini, G., Faverzani, M., Ferri, E., Ferri, F., Ferroni, F., Figueroa-Feliciano, E., Foggetta, L., Formaggio, J., Franceschi, A., Fu, C., Fu, S., Fujikawa, B. K., Gallas, A., Gascon, J., Ghislandi, S., Giachero, A., Gianvecchio, A., Girola, M., Gironi, L., Giuliani, A., Gorla, P., Gotti, C., Grant, C., Gras, P., Guillaumon, P. V., Gutierrez, T. D., Han, K., Hansen, E. V., Heeger, K. M., Helis, D. L., Huang, H. Z., Ianni, A., Imbert, L., Johnston, J., Juillard, A., Karapetrov, G., Keppel, G., Khalife, H., Kobychev, V. V., Kolomensky, Yu. G., Konovalov, S. I., Kowalski, R., Langford, T., Lefevre, M., Liu, R., Liu, Y., Loaiza, P., Ma, L., Madhukuttan, M., Mancarella, F., Marrache-Kikuchi, C. A., Marini, L., Marnieros, S., Martinez, M., Maruyama, R. H., Mas, Ph., Mayer, D., Mazzitelli, G., Mei, Y., Milana, S., Morganti, S., Napolitano, T., Nastasi, M., Nikkel, J., Nisi, S., Nones, C., Norman, E. B., Novosad, V., Nutini, I., O'Donnell, T., Olivieri, E., Olmi, M., Ouellet, J. L., Pagan, S., Pagliarone, C., Pagnanini, L., Pattavina, L., Pavan, M., Peng, H., Pessina, G., Pettinacci, V., Pira, C., Pirro, S., Poda, D. V., Polischuk, O. G., Ponce, I., Pozzi, S., Previtali, E., Puiu, A., Quitadamo, S., Ressa, A., Rizzoli, R., Rosenfeld, C., Rosier, P., Scarpaci, J. A., Schmidt, B., Sharma, V., Shlegel, V. N., Singh, V., Sisti, M., Slocum, P., Speller, D., Surukuchi, P. T., Taffarello, L., Tomei, C., Torres, J. A., Tretyak, V. I., Tsymbaliuk, A., Velazquez, M., Vetter, K. J., Wagaarachchi, S. L., Wang, G., Wang, L., Wang, R., Welliver, B., Wilson, J., Wilson, K., Winslow, L. A., Xue, M., Yan, L., Yang, J., Yefremenko, V., Umatov, V. I., Zarytskyy, M. M., Zhang, J., Zolotarova, A., and Zucchelli, S.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, $\mu$Bq/kg, level of the LMO crystals radioactive contamination by $^{228}$Th and $^{226}$Ra., Comment: Prepared for submission to JINST; 23 pages, 9 figures, and 4 tables
- Published
- 2023
- Full Text
- View/download PDF
50. JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos
- Author
-
Abusleme, Angel, Adam, Thomas, Ahmad, Shakeel, Ahmed, Rizwan, Aiello, Sebastiano, Akram, Muhammad, Aleem, Abid, Alexandros, Tsagkarakis, An, Fengpeng, An, Qi, Andronico, Giuseppe, Anfimov, Nikolay, Antonelli, Vito, Antoshkina, Tatiana, Asavapibhop, Burin, de André, João Pedro Athayde Marcondes, Auguste, Didier, Bai, Weidong, Balashov, Nikita, Baldini, Wander, Barresi, Andrea, Basilico, Davide, Baussan, Eric, Bellato, Marco, Beretta, Marco, Bergnoli, Antonio, Bick, Daniel, Bieger, Lukas, Biktemerova, Svetlana, Birkenfeld, Thilo, Blum, David, Blyth, Simon, Bolshakova, Anastasia, Bongrand, Mathieu, Bordereau, Clément, Breton, Dominique, Brigatti, Augusto, Brugnera, Riccardo, Bruno, Riccardo, Budano, Antonio, Busto, Jose, Cabrera, Anatael, Caccianiga, Barbara, Cai, Hao, Cai, Xiao, Cai, Yanke, Cai, Zhiyan, Callier, Stéphane, Cammi, Antonio, Campeny, Agustin, Cao, Chuanya, Cao, Guofu, Cao, Jun, Caruso, Rossella, Cerna, Cédric, Cerrone, Vanessa, Chan, Chi, Chang, Jinfan, Chang, Yun, Chen, Chao, Chen, Guoming, Chen, Pingping, Chen, Shaomin, Chen, Yixue, Chen, Yu, Chen, Zhiyuan, Chen, Zikang, Cheng, Jie, Cheng, Yaping, Cheng, Yu Chin, Chepurnov, Alexander, Chetverikov, Alexey, Chiesa, Davide, Chimenti, Pietro, Chu, Ziliang, Chukanov, Artem, Claverie, Gérard, Clementi, Catia, Clerbaux, Barbara, Molla, Marta Colomer, Di Lorenzo, Selma Conforti, Coppi, Alberto, Corti, Daniele, Csakli, Simon, Corso, Flavio Dal, Dalager, Olivia, Datta, Jaydeep, De La Taille, Christophe, Deng, Zhi, Deng, Ziyan, Depnering, Wilfried, Ding, Xiaoyu, Ding, Xuefeng, Ding, Yayun, Dirgantara, Bayu, Dittrich, Carsten, Dmitrievsky, Sergey, Dohnal, Tadeas, Dolzhikov, Dmitry, Donchenko, Georgy, Dong, Jianmeng, Doroshkevich, Evgeny, Dou, Wei, Dracos, Marcos, Druillole, Frédéric, Du, Ran, Du, Shuxian, Dugas, Katherine, Dusini, Stefano, Duyang, Hongyue, Eck, Jessica, Enqvist, Timo, Fabbri, Andrea, Fahrendholz, Ulrike, Fan, Lei, Fang, Jian, Fang, Wenxing, Fargetta, Marco, Fedoseev, Dmitry, Fei, Zhengyong, Feng, Li-Cheng, Feng, Qichun, Ferraro, Federico, Fournier, Amélie, Gan, Haonan, Gao, Feng, Garfagnini, Alberto, Gavrikov, Arsenii, Giammarchi, Marco, Giudice, Nunzio, Gonchar, Maxim, Gong, Guanghua, Gong, Hui, Gornushkin, Yuri, Göttel, Alexandre, Grassi, Marco, Gromov, Maxim, Gromov, Vasily, Gu, Minghao, Gu, Xiaofei, Gu, Yu, Guan, Mengyun, Guan, Yuduo, Guardone, Nunzio, Guo, Cong, Guo, Wanlei, Guo, Xinheng, Hagner, Caren, Han, Ran, Han, Yang, He, Miao, He, Wei, Heinz, Tobias, Hellmuth, Patrick, Heng, Yuekun, Herrera, Rafael, Hor, YuenKeung, Hou, Shaojing, Hsiung, Yee, Hu, Bei-Zhen, Hu, Hang, Hu, Jianrun, Hu, Jun, Hu, Shouyang, Hu, Tao, Hu, Yuxiang, Hu, Zhuojun, Huang, Guihong, Huang, Hanxiong, Huang, Jinhao, Huang, Junting, Huang, Kaixuan, Huang, Wenhao, Huang, Xin, Huang, Xingtao, Huang, Yongbo, Hui, Jiaqi, Huo, Lei, Huo, Wenju, Huss, Cédric, Hussain, Safeer, Imbert, Leonard, Ioannisian, Ara, Isocrate, Roberto, Jelmini, Beatrice, Jeria, Ignacio, Ji, Xiaolu, Jia, Huihui, Jia, Junji, Jian, Siyu, Jiang, Cailian, Jiang, Di, Jiang, Wei, Jiang, Xiaoshan, Jing, Xiaoping, Jollet, Cécile, Kampmann, Philipp, Kang, Li, Karaparambil, Rebin, Kazarian, Narine, Khan, Ali, Khatun, Amina, Khosonthongkee, Khanchai, Korablev, Denis, Kouzakov, Konstantin, Krasnoperov, Alexey, Kuleshov, Sergey, Kutovskiy, Nikolay, Lachenmaier, Tobias, Landini, Cecilia, Leblanc, Sébastien, Lebrin, Victor, Lefevre, Frederic, Lei, Ruiting, Leitner, Rupert, Leung, Jason, Li, Demin, Li, Fei, Li, Fule, Li, Gaosong, Li, Huiling, Li, Jiajun, Li, Mengzhao, Li, Min, Li, Nan, Li, Qingjiang, Li, Ruhui, Li, Rui, Li, Shanfeng, Li, Tao, Li, Teng, Li, Weidong, Li, Weiguo, Li, Xiaomei, Li, Xiaonan, Li, Xinglong, Li, Yi, Li, Yichen, Li, Yufeng, Li, Zepeng, Li, Zhaohan, Li, Zhibing, Li, Ziyuan, Li, Zonghai, Liang, Hao, Liao, Jiajun, Limphirat, Ayut, Lin, Guey-Lin, Lin, Shengxin, Lin, Tao, Ling, Jiajie, Ling, Xin, Lippi, Ivano, Liu, Caimei, Liu, Fang, Liu, Fengcheng, Liu, Haidong, Liu, Haotian, Liu, Hongbang, Liu, Hongjuan, Liu, Hongtao, Liu, Hui, Liu, Jianglai, Liu, Jiaxi, Liu, Jinchang, Liu, Min, Liu, Qian, Liu, Qin, Liu, Runxuan, Liu, Shenghui, Liu, Shubin, Liu, Shulin, Liu, Xiaowei, Liu, Xiwen, Liu, Xuewei, Liu, Yankai, Liu, Zhen, Lokhov, Alexey, Lombardi, Paolo, Lombardo, Claudio, Loo, Kai, Lu, Chuan, Lu, Haoqi, Lu, Jingbin, Lu, Junguang, Lu, Peizhi, Lu, Shuxiang, Lubsandorzhiev, Bayarto, Lubsandorzhiev, Sultim, Ludhova, Livia, Lukanov, Arslan, Luo, Daibin, Luo, Fengjiao, Luo, Guang, Luo, Jianyi, Luo, Shu, Luo, Wuming, Luo, Xiaojie, Lyashuk, Vladimir, Ma, Bangzheng, Ma, Bing, Ma, Qiumei, Ma, Si, Ma, Xiaoyan, Ma, Xubo, Maalmi, Jihane, Magoni, Marco, Mai, Jingyu, Malyshkin, Yury, Mandujano, Roberto Carlos, Mantovani, Fabio, Mao, Xin, Mao, Yajun, Mari, Stefano M., Marini, Filippo, Martini, Agnese, Mayer, Matthias, Mayilyan, Davit, Mednieks, Ints, Meng, Yue, Meraviglia, Anita, Meregaglia, Anselmo, Meroni, Emanuela, Meyhöfer, David, Miramonti, Lino, Mohan, Nikhil, Montini, Paolo, Montuschi, Michele, Müller, Axel, Nastasi, Massimiliano, Naumov, Dmitry V., Naumova, Elena, Navas-Nicolas, Diana, Nemchenok, Igor, Thi, Minh Thuan Nguyen, Nikolaev, Alexey, Ning, Feipeng, Ning, Zhe, Nunokawa, Hiroshi, Oberauer, Lothar, Ochoa-Ricoux, Juan Pedro, Olshevskiy, Alexander, Orestano, Domizia, Ortica, Fausto, Othegraven, Rainer, Paoloni, Alessandro, Parmeggiano, Sergio, Pei, Yatian, Pelicci, Luca, Peng, Anguo, Peng, Haiping, Peng, Yu, Peng, Zhaoyuan, Perrot, Frédéric, Petitjean, Pierre-Alexandre, Petrucci, Fabrizio, Pilarczyk, Oliver, Rico, Luis Felipe Piñeres, Popov, Artyom, Poussot, Pascal, Previtali, Ezio, Qi, Fazhi, Qi, Ming, Qi, Xiaohui, Qian, Sen, Qian, Xiaohui, Qian, Zhen, Qiao, Hao, Qin, Zhonghua, Qiu, Shoukang, Ranucci, Gioacchino, Rasheed, Reem, Re, Alessandra, Rebii, Abdel, Redchuk, Mariia, Ren, Bin, Ren, Jie, Ricci, Barbara, Rifai, Mariam, Roche, Mathieu, Rodphai, Narongkiat, Romani, Aldo, Roskovec, Bedřich, Ruan, Xichao, Rybnikov, Arseniy, Sadovsky, Andrey, Saggese, Paolo, Sandanayake, Deshan, Sanfilippo, Simone, Sangka, Anut, Sawangwit, Utane, Schever, Michaela, Schwab, Cédric, Schweizer, Konstantin, Selyunin, Alexandr, Serafini, Andrea, Settimo, Mariangela, Sharov, Vladislav, Shaydurova, Arina, Shi, Jingyan, Shi, Yanan, Shutov, Vitaly, Sidorenkov, Andrey, Šimkovic, Fedor, Singhal, Apeksha, Sirignano, Chiara, Siripak, Jaruchit, Sisti, Monica, Smirnov, Mikhail, Smirnov, Oleg, Sogo-Bezerra, Thiago, Sokolov, Sergey, Songwadhana, Julanan, Soonthornthum, Boonrucksar, Sotnikov, Albert, Šrámek, Ondřej, Sreethawong, Warintorn, Stahl, Achim, Stanco, Luca, Stankevich, Konstantin, Steiger, Hans, Steinmann, Jochen, Sterr, Tobias, Stock, Matthias Raphael, Strati, Virginia, Studenikin, Alexander, Su, Jun, Sun, Shifeng, Sun, Xilei, Sun, Yongjie, Sun, Yongzhao, Sun, Zhengyang, Suwonjandee, Narumon, Szelezniak, Michal, Takenaka, Akira, Tang, Jian, Tang, Qiang, Tang, Quan, Tang, Xiao, Hariharan, Vidhya Thara, Theisen, Eric, Tietzsch, Alexander, Tkachev, Igor, Tmej, Tomas, Torri, Marco Danilo Claudio, Tortorici, Francesco, Treskov, Konstantin, Triossi, Andrea, Triozzi, Riccardo, Trzaska, Wladyslaw, Tung, Yu-Chen, Tuve, Cristina, Ushakov, Nikita, Vedin, Vadim, Verde, Giuseppe, Vialkov, Maxim, Viaud, Benoit, Vollbrecht, Cornelius Moritz, von Sturm, Katharina, Vorobel, Vit, Voronin, Dmitriy, Votano, Lucia, Walker, Pablo, Wang, Caishen, Wang, Chung-Hsiang, Wang, En, Wang, Guoli, Wang, Jian, Wang, Jun, Wang, Lu, Wang, Meng, Wang, Ruiguang, Wang, Siguang, Wang, Wei, Wang, Wenshuai, Wang, Xi, Wang, Xiangyue, Wang, Yangfu, Wang, Yaoguang, Wang, Yi, Wang, Yifang, Wang, Yuanqing, Wang, Yuyi, Wang, Zhe, Wang, Zheng, Wang, Zhimin, Watcharangkool, Apimook, Wei, Wei, Wei, Wenlu, Wei, Yadong, Wen, Kaile, Wen, Liangjian, Weng, Jun, Wiebusch, Christopher, Wirth, Rosmarie, Wonsak, Bjoern, Wu, Diru, Wu, Qun, Wu, Yiyang, Wu, Zhi, Wurm, Michael, Wurtz, Jacques, Wysotzki, Christian, Xi, Yufei, Xia, Dongmei, Xiao, Xiang, Xie, Xiaochuan, Xie, Yuguang, Xie, Zhangquan, Xin, Zhao, Xing, Zhizhong, Xu, Benda, Xu, Cheng, Xu, Donglian, Xu, Fanrong, Xu, Hangkun, Xu, Jilei, Xu, Jing, Xu, Meihang, Xu, Yin, Xu, Yu, Yan, Baojun, Yan, Qiyu, Yan, Taylor, Yan, Xiongbo, Yan, Yupeng, Yang, Changgen, Yang, Chengfeng, Yang, Jie, Yang, Lei, Yang, Xiaoyu, Yang, Yifan, Yao, Haifeng, Ye, Jiaxuan, Ye, Mei, Ye, Ziping, Yermia, Frédéric, You, Zhengyun, Yu, Boxiang, Yu, Chiye, Yu, Chunxu, Yu, Guojun, Yu, Hongzhao, Yu, Miao, Yu, Xianghui, Yu, Zeyuan, Yu, Zezhong, Yuan, Cenxi, Yuan, Chengzhuo, Yuan, Ying, Yuan, Zhenxiong, Yue, Baobiao, Zafar, Noman, Zavadskyi, Vitalii, Zeng, Shan, Zeng, Tingxuan, Zeng, Yuda, Zhan, Liang, Zhang, Aiqiang, Zhang, Bin, Zhang, Binting, Zhang, Feiyang, Zhang, Haosen, Zhang, Honghao, Zhang, Jialiang, Zhang, Jiawen, Zhang, Jie, Zhang, Jingbo, Zhang, Jinnan, Zhang, Mohan, Zhang, Peng, Zhang, Qingmin, Zhang, Shiqi, Zhang, Shu, Zhang, Shuihan, Zhang, Siyuan, Zhang, Tao, Zhang, Xiaomei, Zhang, Xin, Zhang, Xuantong, Zhang, Yinhong, Zhang, Yiyu, Zhang, Yongpeng, Zhang, Yu, Zhang, Yuanyuan, Zhang, Yumei, Zhang, Zhenyu, Zhang, Zhijian, Zhao, Jie, Zhao, Rong, Zhao, Runze, Zhao, Shujun, Zheng, Dongqin, Zheng, Hua, Zheng, Yangheng, Zhong, Weirong, Zhou, Jing, Zhou, Li, Zhou, Nan, Zhou, Shun, Zhou, Tong, Zhou, Xiang, Zhu, Jingsen, Zhu, Kangfu, Zhu, Kejun, Zhu, Zhihang, Zhuang, Bo, Zhuang, Honglin, Zong, Liang, Zou, Jiaheng, Züfle, Jan, and Zwickel, Sebastian
- Subjects
High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO's large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves.
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.