25 results on '"P. H. Hauschildt"'
Search Results
2. Determination of Chemical Substances in Indoor Air as Cause of Discomfort and Annoyance - Sampling Strategy and Combined Chemical and Olfactometrical Analyses
- Author
-
H. Hauschildt, H. Grams, E. Gierden, P. Tenhaken, and A.S. Van Den Burgd
- Subjects
Chemical engineering ,TP155-156 ,Computer engineering. Computer hardware ,TK7885-7895 - Abstract
The indoor air of a room is highly important because it has a big impact on people’s comfort. If the air is contaminated due to the materials installed within the room, the air can lead to annoyance reactions, discomfort, and even headaches and dizziness. However, until today, identifying the odorous sources remains difficult. In this paper, a new approach for the determination of the odour sources of indoor air is described. In the investigated room, sampling bags were placed on the various surfaces. The surface emission was thus captured in sample bags. An additional sample of the indoor air was taken. As a first step, the spectra in GC- IMS of the various surfaces and the room air were compared. From the similarities, the sample with the highest potential to be the odour source was chosen. From this sample, a GC-MS and a parallel GC-Sniffing analysis were performed. The results were used to select two substances with a high odourous impact in the GC-Sniffing analysis but also have a matching odour description with the indoor air character. For these substances, no odour detection threshold (OTV) in literature was known. In a second step, an OTV was determined for these substances using the DIN EN 13725 (2003). As a conclusion, the combination of molecular and olfactory analysis allows the identification of odorous sources in indoor air.
- Published
- 2016
- Full Text
- View/download PDF
3. EMISSA (Exploring Millimeter Indicators of Solar-Stellar Activity) II. Towards a robust indicator of stellar activity
- Author
-
A. Mohan, S. Wedemeyer, P. H. Hauschildt, S. Pandit, and M. Saberi
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics - Earth and Planetary Astrophysics - Abstract
An activity indicator, which can provide a robust quantitative mapping between the stellar activity and the physical properties of its atmosphere, is important in exploring the physics of activity across spectral types. But the common activity indicators show large variability in their values which makes defining a robust quantitative scale difficult. Millimetre (mm) wavelengths probe the different atmospheric layers within the stellar chromosphere providing a tomographic view of the atmospheric dynamics. The project aims to define a robust mm-based activity indicator for the cool main-sequence stars ($\mathrm{T_{eff}} \sim$ 5000 - 7000 K). We derive the mm-brightness temperature ($\mathrm{T_B(\nu)}$) spectral indices ($\mathrm{\alpha_{mm}}$) for cool stars including the Sun using archival data in the 30 - 1000 GHz range. The derived values for $\mathrm{\alpha_{mm}}$ are explored as a function of various physical parameters and empirical power-law functions were derived. $\mathrm{\alpha_{mm}}$ estimates were also compared with other activity indicators. Despite the estimation errors, $\mathrm{\alpha_{mm}}$ values could well distinguish the cool stars, unlike common activity indicators. The low estimation errors on the derived trends of $\mathrm{\alpha_{mm}}$ versus physical parameters suggest that $\mathrm{\alpha_{mm}}$ could be a robust activity indicator. $\mathrm{\alpha_{mm}}$, which is linked to chromospheric thermal stratification and activity in cool stars can well distinguish and physically characterise the stars more robustly than common activity indicators. We emphasise the need for multi-frequency data across the mm-band for stars, with a range of physical parameters and gathered at multiple epochs during activity cycles. This will help explore $\mathrm{\alpha_{mm}}$ in a statistically robust manner and study the emergence of chromospheric heating on the main-sequence., Comment: Accepted in A&A Letters
- Published
- 2022
4. CARMENES: high-resolution spectra and precise radial velocities in the red and infrared
- Author
-
R. Gonzalez Peinado, Ralf Launhardt, Lluis Gesa, C. del Burgo, F. F. Bauer, M. Doellinger, R. P. Hedrosa, J. Carro, Jose A. Caballero, Z. M. Berdiñas, D. Montes, Ulrich Mall, M. Blümcke, M. Kehr, S. Schäfer, D. Pérez-Medialdea, M. Salz, Mercedes López-Morales, E. N. Johnson, V. Wolthoff, A. Rosich, Mathias Zechmeister, P. Redondo, E. Mirabet, E. Díez-Alonso, Johana Panduro, L. Hernández Castaño, P. Rhode, I. Hermelo, David Barrado, Enric Palle, Walter Seifert, Manuel Perger, Javier López-Santiago, D. Benítez, E. Herrero, S. Sabotta, Víctor J. S. Béjar, M. L. García-Vargas, S. Becerril, M. J. López González, Rainer Lenzen, Luigi Mancini, M. Lafarga, A. Kaminski, P. Schöfer, M. E. Moreno-Raya, R.-R. Rohloff, H. W. Rix, C. J. Marvin, Ignasi Ribas, R. Garrido, J. A. Marín Molina, D. Hermann, Emilio Marfil, J. H. M. M. Schmitt, M. Pluto, M. Cortés-Contreras, Reinhard Mundt, M. A. Sánchez Carrasco, L. González-Cuesta, Th. Henning, J. Klüter, M. Tala Pinto, D. Galadí-Enríquez, P. Huke, J. Pascual, M. López del Fresno, Grzegorz Nowak, Trifon Trifonov, M. Llamas, P. H. Hauschildt, G. Veredas, N. Lodieu, E. de Juan, J. B. P. Strachan, S. Sadegi, W. Xu, O. Herbort, E. de Guindos, J. Sanz-Forcada, M. Lampón, Michael Perryman, K. F. Huber, Josep Colomé, Denis Shulyak, M. Kim, J. Aceituno, Lisa Nortmann, Andreas Quirrenbach, Juan Carlos Suárez, C. Cardona Guillén, Ana Pérez-Calpena, A. Claret, Martin Kürster, Werner Laun, J. Cano, Lev Tal-Or, A. Garcia-Piquer, F. J. Alonso-Floriano, B. Arroyo-Torres, A. Klutsch, Hubert Klahr, H. Martínez-Rodríguez, Ulrich Grözinger, O. Stahl, S. Pedraz, S. Martin-Ruiz, M. Azzaro, J. L. Lizon, C. Feiz, Manuel López-Puertas, M. Ammler-von Eiff, M. R. Zapatero Osorio, Rafael Luque, I. Gallardo, Guillem Anglada-Escudé, L. Sairam, J. F. López Salas, H. Mandel, A. Ramón, D. Hidalgo, N. Labiche, J. Guàrdia, F. Hernández Hernando, U. Lemke, Francesc Vilardell, E. González-Álvarez, J. Stürmer, Hugo M. Tabernero, G. Bergondy, R. Hernández Arabí, Vianak Naranjo, J. Winkler, Armin Huber, Fei Yan, B. Fuhrmeister, Rafael Rebolo, Simon Tulloch, Ansgar Reiners, F. J. Lázaro, A. P. Hatzes, H. Magán Madinabeitia, Paula Sarkis, J. Helmling, Z. Zhao, Sabine Reffert, E. Casal, A. Sánchez-López, M. C. Gálvez-Ortiz, J. I. González Hernández, D. Hintz, D. Baroch, A. Lamert, E. L. Martín, A. Schweitzer, Evangelos Nagel, V. Gómez Galera, M. Fernández, A. Guijarro, C. Cifuentes, E. Sánchez-Blanco, R. G. Ulbrich, Carlo Schmidt, F. Labarga, Pedro J. Amado, V. M. Passegger, F. J. Abellán, S. Grohnert, F. Rodler, Ricardo Dorda, Clemens Storz, G. Gaisné, K. Frölich, A. Moya, Juan Carlos Morales, E. W. Guenther, E. Rodriguez, H. J. Hagen, Ralf Klein, D. Maroto Fernández, I. M. Ferro, Karl Wagner, L. M. Lara, S. Dreizler, S. Czesla, M. Brinkmöller, M. C. Cardenas, Enrique Solano, M. Vidal-Dasilva, C. Rodríguez López, M. Abril, G. Holgado, J. Schiller, L. F. Sarmiento, A. Pavlov, H. Anwand-Heerwart, S. V. Jeffers, S. Reinhart, J. L. Vico Linares, and Richard J. Mathar
- Subjects
Astrofísica ,Astrophysics::Cosmology and Extragalactic Astrophysics ,7. Clean energy ,01 natural sciences ,010309 optics ,Planet ,Spectrographs ,Cool Stars ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Transit (astronomy) ,M Dwarfs ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Optical Instrumentation ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Extrasolar Planets ,Exoplanet ,Radial velocity ,Stars ,13. Climate action ,Terrestrial planet ,Spectral atlas ,Astrophysics::Earth and Planetary Astrophysics ,Circumstellar habitable zone ,Near-Infrared Instrumentation - Abstract
The design and construction of CARMENES has been presented at previous SPIE conferences. It is a next-generation radial-velocity instrument at the 3.5m telescope of the Calar Alto Observatory, which was built by a consortium of eleven Spanish and German institutions. CARMENES consists of two separate échelle spectrographs covering the wavelength range from 0.52 to 1.71¿m at a spec-tral resolution of R < 80,000, fed by fibers from the Cassegrain focus of the telescope. CARMENES saw ¿First Light¿ on Nov 9, 2015. During the commissioning and initial operation phases, we established basic performance data such as throughput and spectral resolution. We found that our hollow-cathode lamps are suitable for precise wavelength calibration, but their spectra contain a number of lines of neon or argon that are so bright that the lamps cannot be used in simultaneous exposures with stars. We have therefore adopted a calibration procedure that uses simultaneous star / Fabry Pérot etalon exposures in combination with a cross-calibration between the etalons and hollow-cathode lamps during daytime. With this strategy it has been possible to achieve 1-2 m/s precision in the visible and 5-10 m/s precision in the near-IR; further improvements are expected from ongoing work on temperature control, calibration procedures and data reduction. Comparing the RV precision achieved in different wavelength bands, we find a ¿sweet spot¿ between 0.7 and 0.8¿m, where deep TiO bands provide rich RV information in mid-M dwarfs. This is in contrast to our pre-survey models, which predicted comparatively better performance in the near-IR around 1¿m, and explains in part why our near-IR RVs do not reach the same precision level as those taken with the visible spectrograph. We are now conducting a large survey of 340 nearby M dwarfs (with an average distance of only 12pc), with the goal of finding terrestrial planets in their habitable zones. We have detected the signatures of several previously known or suspected planets and also discovered several new planets. We find that the radial velocity periodograms of many M dwarfs show several significant peaks. The development of robust methods to distinguish planet signatures from activity-induced radial velocity jitter is therefore among our priorities. Due to its large wavelength coverage, the CARMENES survey is generating a unique data set for studies of M star atmospheres, rotation, and activity. The spectra cover important diagnostic lines for activity (H alpha, Na I D1 and D2, and the Ca II infrared triplet), as well as FeH lines, from which the magnetic field can be inferred. Correlating the time series of these features with each other, and with wavelength-dependent radial velocities, provides excellent handles for the discrimination between planetary companions and stellar radial velocity jitter. These data are also generating new insight into the physical properties of M dwarf atmospheres, and the impact of activity and flares on the habitability of M star planets. © 2018 SPIE., CARMENES is an instrument for the Centro Astronomico Hispano-Aleman de Calar Alto (CAHA, Almeria, Spain). CARMENES is funded by the German Max-Planck-Gesellschaft (MPG), the Spanish Consejo Superior de Investigaciones Cientificas (CSIC), the European Union through FEDER/ERF FICTS-2011-02 funds, and the members of the CARMENES Consortium (Max-Planck-Institut fur Astronomie, Instituto de Astrofisica de Andalucia, Landessternwarte Konigstuhl, Institut de Ciencies de l'Espai, Insitut fur Astrophysik Gottingen, Universidad Complutense de Madrid, Thuringer Landessternwarte Tautenburg, Instituto de Astrofisica de Canarias, Hamburger Sternwarte, Centro de Astrobiologia and Centro Astronomico Hispano-Aleman), with additional contributions by the Spanish Ministry of Science, the German Science Foundation through the Major Research Instrumentation Program and DFG Research Unit FOR2544 "Blue Planets around Red Stars", the Klaus Tschira Stiftung, the states of Baden-Wurttemberg and Niedersachsen, and by the Junta de Andalucia.
- Published
- 2018
5. The influence of dust formation modelling on Na i and K i line profiles in substellar atmospheres
- Author
-
C. M. S. Johnas, Ch. Helling, M. Dehn, P. Woitke, and P. H. Hauschildt
- Subjects
Physics ,Kinetic model ,Gas giant ,Astrophysics (astro-ph) ,Brown dwarf ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Alkali metal ,Kinetic energy ,Atmosphere ,Space and Planetary Science ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
We aim to understand the correlation between cloud formation and alkali line formation in substellar atmospheres.We perform line profile calculations for Na I and K I based on the coupling of our kinetic model for the formation and composition of dust grains with 1D radiative transfer calculations in atmosphere models for brown dwarfs and giant gas planets. The Na I and K I line profiles sensibly depend on the way clouds are treated in substellar atmosphere simulations. The kinetic dust formation model results in the highest pseudo-continuum compared to the limiting cases., Comment: 5 pages, Accepted for publication in MNRAS
- Published
- 2008
- Full Text
- View/download PDF
6. Center-to-limb variation of intensity and polarization in continuum spectra of FGK stars for spherical atmospheres
- Author
-
N. M. Kostogryz, P. H. Hauschildt, Ivan Milic, and Svetlana V. Berdyugina
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Opacity ,Stellar atmosphere ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Effective temperature ,Light curve ,01 natural sciences ,Spectral line ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Binary star ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
One of the necessary parameters needed for the interpretation of the light curves of transiting exoplanets or eclipsing binaries, as well as interferometric measurements of a star or microlensing events is how the intensity and polarization of a light change from the center to the limb. Scattering and absorption processes in stellar atmosphere affect both the center-to limb variation of intensity (CLVI) and polarization (CLVP). In this paper, we present a study of the CLVI and CLVP in continuum spectra considering different contributions of scattering and absorption opacity for different spectral type stars with spherical atmospheres. We solve the polarized radiative transfer equation in the presence of continuum scattering, considering spherical stellar model atmospheres. We developed two independent codes based on Feautrier and short characteristics methods to cross-check our results. We calculate the CLVI and CLVP in continuum for the Phoenix grid of spherical stellar model atmospheres for a range of $T_{eff} = 4000 - 7000 \rm K$, $\log g = 1.0 - 5.5$ and $\lambda = 4000 - 7000 \rm \AA$, which are tabulated and available at the CDS. For sub-giant and dwarf stars ($\log g = 3.0 - 4.5$), lower $\log g$ and lower $T_{eff}$ of a star lead to higher limb polarization of the star. For giant and supergiant stars ($\log g = 1.0 - 2.5$), the highest effective temperature yields the largest polarization. By decreasing of the $T_{eff}$ of a star down to $4500 - 5500 \rm K$ (depending on $\log g$) the limb polarization decreases and reaches a local minimum. It increases again down to $T_{eff}$ of $4000 \rm K$. For the most compact dwarf stars ($\log g = 5.0 - 5.5$) the limb polarization degree shows a maximum for models with $T_{eff}$ in the range $4200 - 4600 \rm K$ (depending on $\log g$) and decreases toward higher and lower temperatures., Comment: 13 pages, 12 figures, submitted to A&A
- Published
- 2015
7. Atmospheric Models of Red Giants with Massive‐Scale Non–Local Thermodynamic Equilibrium
- Author
-
C. I. Short and P. H. Hauschildt
- Subjects
Physics ,Opacity ,Atmospheric models ,010308 nuclear & particles physics ,Red giant ,Metallicity ,Flux ,Astronomy and Astrophysics ,Scale (descriptive set theory) ,Astrophysics ,7. Clean energy ,01 natural sciences ,Stars ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Arcturus ,010303 astronomy & astrophysics - Abstract
We present plane-parallel and spherical LTE and NLTE atmospheric models of a variety of stellar parameters of the red giant star Arcturus (alpha Boo, HD124897, HR5340) and study their ability to fit the measured absolute flux distribution. Our NLTE models include tens of thousands of the strongest lines in NLTE, and we investigate separately the effects of treating the light metals and the Fe group elements Fe and Ti in NLTE. We find that the NLTE effects of Fe group elements on the model structure and flux distribution are much more important than the NLTE effects of all the light metals combined, and serve to substantially increases the violet and near UV flux level as a result of NLTE Fe over-ionization. Both the LTE and NLTE models predict significantly more flux in the blue and UV bands than is observed. We find that within the moderately metal-poor metallicity range, the effect of NLTE on the overall UV flux level decreases with decreasing metallicity. These results suggest that there may still be important UV opacity missing from the models. We find that models of solar metallicity giants of similar spectral type to Arcturus fit well the observed flux distributions of those stars from the red to the near UV band. This suggests that the blue and near UV flux discrepancy is metallicity dependent, increasing with decreasing metallicity.
- Published
- 2003
- Full Text
- View/download PDF
8. Hα Equivalent Width Variations across the Face of a Microlensed K Giant in the Galactic Bulge
- Author
-
M. Albrow, J. An, J.-P. Beaulieu, J. A. R. Caldwell, M. Dominik, J. Greenhill, K. Hill, S. Kane, R. Martin, J. Menzies, K. Pollard, P. D. Sackett, K. C. Sahu, P. Vermaak, R. Watson, A. Williams, null (The PLANET Collaboration), and P. H. Hauschildt
- Subjects
Physics ,Astrophysics (astro-ph) ,Stellar atmosphere ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Gravitational microlensing ,Spectral line ,Stars ,Space and Planetary Science ,Bulge ,Astrophysics::Solar and Stellar Astrophysics ,H-alpha ,Astrophysics::Earth and Planetary Astrophysics ,Caustic (optics) ,Equivalent width ,Astrophysics::Galaxy Astrophysics - Abstract
We present VLT FORS1 spectroscopy that temporally resolves the second caustic crossing of the Bulge K giant source of microlensing event EROS 2000-BLG-5, the first time this has been accomplished for several phases of a caustic transit. The ~1 angstrom H-alpha equivalent width of the source star increases slightly as the center of the star egresses the caustic and then plummets by 30% during the final limb crossing. These changes are not seen in contemporaneous spectra of control stars in the FORS1 slit, but are qualitatively consistent with expectations from stellar atmosphere models as the caustic differentially magnifies different portions of the stellar face of the target. Observations such as these in a variety of stellar lines are equivalent to atmospheric tomography and are expected to provide a direct test of stellar models., 15 pages, including 1 table and 4 figures. As accepted by ApJ Letters, vol 550
- Published
- 2001
- Full Text
- View/download PDF
9. Water vapour in cool dwarf stars
- Author
-
H. R. A. Jones, A. J. Longmore, F. Allard, P. H. Hauschildt, S. Miller, and J. Tennyson
- Subjects
Physics ,Photosphere ,Opacity ,Space and Planetary Science ,Brown dwarf ,Stellar atmosphere ,Astronomy and Astrophysics ,Atomic physics ,Effective temperature ,Physics::Atmospheric and Oceanic Physics ,Water vapor ,Spectral line ,Line (formation) - Abstract
We present comparisons which show good agreement between observed and synthetic spectra for water vapour transitions in a range of M dwarfs, The observations were made from 2.85 to 3.40 mu m where water vapour transitions are strong in cool stars but relatively weak in the Earth's atmosphere, allowing reliable observations to be made, The synthetic spectra were computed using a stellar atmosphere code and include preliminary ab initio calculations for re-vibrational bands up to J = 30, Synthetic spectra indicate that changes in metallicity and gravity have a small effect on the strength of the observed water bands whereas temperature changes produce large differences in strength, Formally, we find similar effective temperatures to those found in previous work. However, since the molecular opacity at the peak of the flux distribution is not well determined, uncertainties in the model atmosphere structure and the effective temperature scale remain.Detailed line profiles can be modelled for atomic lines because their damping constants are known, but they are not known for molecular transitions, Atomic lines computed with Voigt profiles and Van der Waals pressure broadening give an averaged full width half maximum of around 50 km s(-1), For the observed water vapour transitions to match this generation of synthetic spectra we use Gaussian profiles with a full width half maximum of 2 km s(-1) to model the pressure broadening of water vapour transitions, Examination of the model structure indicates that water vapour lines are formed relatively high in the photosphere at pressures about an order of magnitude lower than those of atomic lines, These results strongly suggest that water vapour transitions are not pressure broadened sufficiently to overlap; as previously assumed when modelling molecular transitions in cool dwarfs using the Just Overlapping Line Approximation, The inferred lack of pressure broadening allows flux to escape between water lines, even within a region of strong water vapour absorption, and leads to weaker water band strengths. We demonstrate that this result is likely to explain much of the past discrepancy between observed and theoretical spectral energy distributions for M dwarfs
- Published
- 1995
- Full Text
- View/download PDF
10. EChO - Exoplanet Characterisation Observatory
- Author
-
G. Tinetti, J. P. Beaulieu, T. Henning, M. Meyer, G. Micela, I. Ribas, D. Stam, M. Swain, O. Krause, M. Ollivier, E. Pace, B. Swinyard, A. Aylward, R. van Boekel, A. Coradini, T. Encrenaz, I. Snellen, M. R. Zapatero-Osorio, J. Bouwman, J. Y-K. Cho, V. Coudé de Foresto, T. Guillot, M. Lopez-Morales, I. Mueller-Wodarg, E. Palle, F. Selsis, A. Sozzetti, P. A. R. Ade, N. Achilleos, A. Adriani, C. B. Agnor, C. Afonso, C. Allende Prieto, G. Bakos, R. J. Barber, M. Barlow, V. Batista, P. Bernath, B. Bézard, P. Bordé, L. R. Brown, A. Cassan, C. Cavarroc, A. Ciaravella, C. Cockell, A. Coustenis, C. Danielski, L. Decin, R. De Kok, O. Demangeon, P. Deroo, P. Doel, P. Drossart, L. N. Fletcher, M. Focardi, F. Forget, S. Fossey, P. Fouqué, J. Frith, M. Galand, P. Gaulme, J. I. González Hernández, O. Grasset, D. Grassi, J. L. Grenfell, M. J. Griffin, C. A. Griffith, U. Grözinger, M. Guedel, P. Guio, O. Hainaut, R. Hargreaves, P. H. Hauschildt, K. Heng, D. Heyrovsky, R. Hueso, P. Irwin, L. Kaltenegger, P. Kervella, D. Kipping, T. T. Koskinen, G. Kovács, A. La Barbera, H. Lammer, E. Lellouch, G. Leto, M. Lopez Morales, M. A. Lopez Valverde, M. Lopez-Puertas, C. Lovis, A. Maggio, J. P. Maillard, J. Maldonado Prado, J. B. Marquette, F. J. Martin-Torres, P. Maxted, S. Miller, S. Molinari, D. Montes, A. Moro-Martin, J. I. Moses, O. Mousis, N. Nguyen Tuong, R. Nelson, G. S. Orton, E. Pantin, E. Pascale, S. Pezzuto, D. Pinfield, E. Poretti, R. Prinja, L. Prisinzano, J. M. Rees, A. Reiners, B. Samuel, A. Sánchez-Lavega, J. Sanz Forcada, D. Sasselov, G. Savini, B. Sicardy, A. Smith, L. Stixrude, G. Strazzulla, J. Tennyson, M. Tessenyi, G. Vasisht, S. Vinatier, S. Viti, I. Waldmann, G. J. White, T. Widemann, R. Wordsworth, R. Yelle, Y. Yung, S. N. Yurchenko, University College of London [London] (UCL), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, INAF - Osservatorio Astronomico di Palermo (OAPa), Istituto Nazionale di Astrofisica (INAF), Institut de Ciencies de l'Espai [Barcelona] (ICE-CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), SRON Netherlands Institute for Space Research (SRON), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG ), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des technologies de la microélectronique (LTM), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides (CASSIOPEE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), SSE 2012, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Department of Physics and Astronomy [UCL London], Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Department of Chemistry [Waterloo], University of Waterloo [Waterloo], Department of Atmospheric, Oceanic and Planetary Physics [Oxford] (AOPP), University of Oxford, Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire Astrophysique de Toulouse-Tarbes (LATT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Space and Atmospheric Physics Group [London], Blackett Laboratory, Imperial College London-Imperial College London, Laboratoire Hippolyte Fizeau (FIZEAU), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Istituto di Fisica dello Spazio Interplanetario (IFSI), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Zentrum für Astronomie und Astrophysik [Berlin] (ZAA), Technical University of Berlin / Technische Universität Berlin (TU), Departamento de Fisica Aplicada [Bilbao], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Osserv Astrofis Catania, Ist Nazl Astrofis, Instituto de Astrofísica de Andalucía (IAA), Atmospheric Physics Laboratory [UCL London], Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Brera (OAB), Engineering Department, University of Cambridge [UK] (CAM), Lunar and Planetary Laboratory [Tucson] (LPL), University of Arizona, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), University of Oxford [Oxford], Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Consiglio Nazionale delle Ricerche (CNR), Technische Universität Berlin (TU), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), University College of London [London] ( UCL ), Institut d'Astrophysique de Paris ( IAP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Max-Planck-Institut für Astronomie ( MPIA ), INAF - Osservatorio Astronomico di Palermo ( OAPa ), Istituto Nazionale di Astrofisica ( INAF ), Institut de Ciencies de l'Espai [Barcelona] ( ICE-CSIC ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), SRON Netherlands Institute for Space Research ( SRON ), Laboratoire d'Astrophysique de Grenoble ( LAOG ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire des technologies de la microélectronique ( LTM ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Astronomical Institute Anton Pannekoek ( AI PANNEKOEK ), University of Amsterdam [Amsterdam] ( UvA ), Laboratoire d'études spatiales et d'instrumentation en astrophysique ( LESIA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Cosmologie, Astrophysique Stellaire & Solaire, de Planétologie et de Mécanique des Fluides ( CASSIOPEE ), Université Nice Sophia Antipolis ( UNS ), Université Côte d'Azur ( UCA ) -Université Côte d'Azur ( UCA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de la Côte d'Azur, Université Côte d'Azur ( UCA ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Department of Atmospheric, Oceanic and Planetary Physics [Oxford] ( AOPP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ), Laboratoire de Météorologie Dynamique (UMR 8539) ( LMD ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -École polytechnique ( X ) -École des Ponts ParisTech ( ENPC ) -Centre National de la Recherche Scientifique ( CNRS ) -Département des Géosciences - ENS Paris, École normale supérieure - Paris ( ENS Paris ) -École normale supérieure - Paris ( ENS Paris ), Laboratoire Astrophysique de Toulouse-Tarbes ( LATT ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Hippolyte Fizeau ( FIZEAU ), Laboratoire de Planétologie et Géodynamique de Nantes ( LPGN ), Université de Nantes ( UN ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Istituto di Fisica dello Spazio Interplanetario CNR (IFSI), Institut für Meteorologie, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea ( UPV/EHU ), Instituto de Astrofísica de Andalucía ( IAA ), Istituto di Fisica dello Spazio Interplanetaro ( IFSI ), Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules ( UTINAM ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Franche-Comté ( UFC ), Astrophysique Interactions Multi-échelles ( AIM - UMR 7158 - UMR E 9005 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris Diderot - Paris 7 ( UPD7 ), Osservatorio Astronomico di Brera, Department of Applied Mathematics [Sheffield], University of Sheffield [Sheffield], Observatoire de Paris - Site de Meudon ( OBSPM ), Observatoire de Paris-Centre National de la Recherche Scientifique ( CNRS ), University of Cambridge [UK] ( CAM ), Lunar and Planetary Laboratory [Tucson], Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA) - Grenoble-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Technische Universität Berlin (TUB), Observatoire de Paris - Site de Meudon (OBSPM), Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Astrofísica ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,FOS: Physical sciences ,Context (language use) ,01 natural sciences ,7. Clean energy ,Space mission ,law.invention ,Telescope ,law ,Observatory ,Planet ,0103 physical sciences ,Spectral resolution ,010303 astronomy & astrophysics ,Spectrograph ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,ComputingMilieux_MISCELLANEOUS ,QB ,0105 earth and related environmental sciences ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,[PHYS]Physics [physics] ,Exoplanets ,Echo (computing) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astronomy and Astrophysics ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Exoplanet ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astronomía ,[ PHYS.ASTR.EP ] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,13. Climate action ,Space and Planetary Science ,Astrophysics::Earth and Planetary Astrophysics ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Planetary atmospheres ,Astrophysics - Earth and Planetary Astrophysics - Abstract
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2000 K, to those of a few Earth masses, with Teq ~300 K. We have baselined a dispersive spectrograph design covering continuously the 0.4-16 micron spectral range in 6 channels (1 in the VIS, 5 in the IR), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to ~45 K. EChO will be placed in a grand halo orbit around L2. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework., Comment: Accepted for publication in Experimental Astronomy, 23 pages, 15 figures
- Published
- 2012
- Full Text
- View/download PDF
11. The Cosmological Evolution of Dust Clouds in Brown Dwarf Atmospheres
- Author
-
S. Witte, Ch. Helling, P. H. Hauschildt, and Eric Stempels
- Subjects
Physics ,Convection ,Settling ,Particle number ,Metallicity ,Nucleation ,Evaporation ,Brown dwarf ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics ,Astrophysics::Galaxy Astrophysics ,Grain size - Abstract
We present our latest DRIFT‐PHOENIX model results for dust cloud formation in cool atmospheres and investigate the influence of the metallicity [M/H] on the dust cloud structure on the example of a typical mid‐L dwarf (Teff = 2000 K, log (g) = 5.0). Our new dust model simulates the formation of TiO2 seed particles (nucleation) and their subsequent gravitational settling, accompanied by kinetic growth and evaporation of seven solid species on top of these seeds. The gas phase depletion by each of the considered surface reactions and the element replenishment by convective up‐mixing are consistently coupled into this mechanism. The result is a stationary cloud structure in phase‐non‐equilibrium. We observe a comparably low decrease of the dust particle number density and a weak increase of the mean grain size in the lower dust cloud for decreasing metallicities down to [M/H] = −4.0. For even lower metallicities to [M/H] = −6.0, these trends are reversed.
- Published
- 2009
- Full Text
- View/download PDF
12. Spectral synthesis of inner gaseous protoplanetary disks with PHOENIX
- Author
-
S. D. Hügelmeyer, S. Dreizler, D. Homeier, P. H. Hauschildt, T. Barman, and Eric Stempels
- Subjects
Physics ,Debris disk ,Scattering ,Stellar atmosphere ,Astronomy ,Energy–momentum relation ,Astrophysics ,7. Clean energy ,Accretion (astrophysics) ,Stars ,13. Climate action ,Planet ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The inner gaseous regions of protoplanetary disks are of special interest in the formation and evolution of planets and stars because they are the likely birthplaces of planets and serve as the accretion reservoir for young stars. The study of inner disks may give rise to a better understanding of the dynamics, physical and chemical structure, and gas content of the region. As a first step, we have developed a 1+1D disk radiative transfer package as an extension to the well established multipurpose stellar atmosphere program PHOENIX. The solution of the equations of momentum and energy conservation as well as the radiative transfer equation is adopted for the physical conditions in and the geometry of disks. Irradiation by the central star is treated in detail. Comparison of our models with high‐resolution infrared spectra will enable us to constrain the structure, dynamics, and gas content of disks, and thus give new insights on the physical processes governing star and planet formation. Additionally, we...
- Published
- 2009
- Full Text
- View/download PDF
13. Geometry of irradiated stars
- Author
-
A. C. Wawrzyn, H. M. Günther, T. S. Barman, P. H. Hauschildt, and Eric Stempels
- Subjects
Physics ,Stars ,Optics ,Line-of-sight ,business.industry ,Numerical analysis ,Binary star ,Phase (waves) ,Projected area ,Astrophysics::Earth and Planetary Astrophysics ,business ,Spectral line ,Numerical integration - Abstract
The physical conditions in a variety of objects (e.g. hot exoplanets and close binaries) are fundamentally influenced by external irradiation. In static cases this leads to the development of zones of different temperatures on the ‘day‐side’. In order to combine spectra from all zones to a full visible circular disk and to obtain a 1.5D spectrum we need to calculate the weight of each patch. In the following we present the geometrical considerations and calculate the observed projected area of constant temperature in an irradiated object for specific re‐radiation angles. This allows non‐isotropic models to be used. We supply an IDL code to calculate the observed projected area for any patch given the phase and angle between surface and line of sight as well as a proper weighting for each by numerical integration. We end up with a simple approach to upgrade a 1D irradiation model to a quasi 1.5D one. This method can be applied e.g. to irradiated secondaries in close binaries.
- Published
- 2009
- Full Text
- View/download PDF
14. 1D and 3D radiative transfer in circumstellar disks
- Author
-
S. D. Hügelmeyer, S. Dreizler, D. Homeier, P. H. Hauschildt, T. Barman, Ivan Hubeny, James M. Stone, Keith MacGregor, and Klaus Werner
- Subjects
Physics ,Stellar atmosphere ,020206 networking & telecommunications ,02 engineering and technology ,Astrophysics ,Spectral line ,T Tauri star ,Intermediate polar ,Atom ,Vertical direction ,0202 electrical engineering, electronic engineering, information engineering ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,020201 artificial intelligence & image processing ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
We present our code for the calculation of the 1D structure and synthetic spectra of accretion disks. The code is an extension of the well‐tested stellar atmosphere code PHOENIX and is therefore capable of including large lists of atomic and molecular lines as well as a large set of dust species. We assume the standard accretion disk model for geometrically thin disks and solve the radiative transfer equation in the vertical direction for a number of disk rings with different radii. The combination of these rings yields the total disk spectrum. Comparison to observations of the T Tauri star GQ Lup shows the capability of our code. Additionally, we will show first results of 3D radiative transfer calculations. We plan to investigate the effect of rotating disks on the line profile by means of a two‐level atom.
- Published
- 2009
- Full Text
- View/download PDF
15. Model Atmospheres for Novae During the Early Stages
- Author
-
R. Wehrsě, P. H. Hauschildt, G. Shaviv, and S. Starrfield
- Abstract
Continuum and line blanketing models for the photospheres of novae in the early stages of their outbursts are presented. The expanding envelopes are characterized by a very slow increase of density with decreasing radius which leads to very large geometrical extensions and large temperature differences between the inner and outer parts. The spectra show a large IR excess and a small Balmer jump which may be either in absorption or in emission. For the parameters considered (Teff = 104, 1.5 × 104, 2 × 104K, R = 1011 cm, solar composition), most lines are in absorption. The effects of both modifications in the temperature structure (e.g. by heating from shock fronts) and changes in the abundances of the heavy elements on the emergent spectra are briefly discussed.
- Published
- 1990
- Full Text
- View/download PDF
16. Broad-band photometric colors and effective temperature calibrations for late-type giants. I. Z=0.02
- Author
-
A. Kučinskas, P. H. Hauschildt, H.-G. Ludwig, I. Brott, V. Vansevičius, L. Lindegren, T. Tanabé, and F. Allard
- Subjects
Physics ,010504 meteorology & atmospheric sciences ,Stellar mass ,Opacity ,Astrophysics (astro-ph) ,Stellar atmosphere ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Effective temperature ,01 natural sciences ,Spectral line ,Photometry (optics) ,Atmosphere ,13. Climate action ,Space and Planetary Science ,0103 physical sciences ,Thermal ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences - Abstract
We present new synthetic broad-band photometric colors for late-type giants based on synthetic spectra calculated with the PHOENIX model atmosphere code. The grid covers effective temperatures T_eff=3000...5000K, gravities log g=-0.5...+3.5, and metallicities [M/H]=+0.5...-4.0. We show that individual broad-band photometric colors are strongly affected by model parameters such as molecular opacities, gravity, microturbulent velocity, and stellar mass. Our exploratory 3D modeling of a prototypical late-type giant shows that convection has a noticeable effect on the photometric colors too, as it alters significantly both the vertical and horizontal thermal structures in the outer atmosphere. The differences between colors calculated with full 3D hydrodynamical and 1D model atmospheres are significant (e.g., \Delta(V-K)~0.2 mag), translating into offsets in effective temperature of up to ~70K. For a sample of 74 late-type giants in the Solar neighborhood, with interferometric effective temperatures and broad-band photometry available in the literature, we compare observed colors with a new PHOENIX grid of synthetic photometric colors, as well as with photometric colors calculated with the MARCS and ATLAS model atmosphere codes. (abridged), Comment: 30 pages, 21 figures, A&A in press. Table 2 can be obtained from the CDS or directly from the authors
- Published
- 2005
17. The effects of new Na I D line profiles in cool atmospheres
- Author
-
C. M. S. Johnas, P. H. Hauschildt, A. Schweitzer, D. F. T. Mullamphy, G. Peach, and I. B. Whittingham
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Published
- 2007
- Full Text
- View/download PDF
18. A Deep Study of the 3C 273 Field in $\gamma$-rays
- Author
-
P. H. Hauschildt, T. J. L. Courvoisier, I. Kreykenbohm, P. Lubinski, I. Brott, and Nicolas Produit
- Subjects
Physics ,Field (physics) ,Space and Planetary Science ,Gamma ray ,Astronomy ,Astronomy and Astrophysics - Published
- 2005
- Full Text
- View/download PDF
19. New limb-darkening coefficients for Phoenix/1d model atmospheres
- Author
-
A. Claret, P. H. Hauschildt, and S. Witte
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Published
- 2013
- Full Text
- View/download PDF
20. Analysis of Keck High Resolution Spectra of VB10
- Author
-
A. Schweitzer, P. H. Hauschildt, F. Allard, and G. Basri
- Subjects
010504 meteorology & atmospheric sciences ,Metallicity ,Brown dwarf ,FOS: Physical sciences ,Astrophysics ,01 natural sciences ,Spectral line ,symbols.namesake ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Line (formation) ,Physics ,Astrophysics (astro-ph) ,Stellar atmosphere ,Astronomy ,Astronomy and Astrophysics ,Effective temperature ,Wavelength ,Space and Planetary Science ,symbols ,Astrophysics::Earth and Planetary Astrophysics ,van der Waals force - Abstract
We use a preliminary version of our ``NextGen'' grid of cool star model atmospheres to compute synthetic line profiles which fit high resolution Keck spectra of the cool M~dwarf VB10 satisfactorily well. We show that the parameters derived from the Keck data are consistent with the parameters derived from lower resolution spectra with larger wavelength coverage. We discuss the treatment of van der Waals broadening in cool, molecular (mostly ${\rm H_2}$) dominated stellar atmospheres. The line profiles are dominated by van der Waals pressure broadening and are a sensitive indicator for the gravity and metallicity. Therefore, the high-resolution Keck spectra are useful for determining the parameters of M dwarfs. There is some ambiguity between the metallicity and gravity. For VB10, we find from the high-resolution spectra that $ 5.0 < \log(g) < 5.5$ and $0 < \left[\case{\rm M}{\rm H}\right] < +0.5$ for an adopted fixed effective temperature of 2700~K (Schweitzer, 1995), which is consistent with recent interior calculations (Baraffe etal, 1995)., 8 pages, latex, MNRAS style, figures not included, full text plus figures available at http://brian.la.asu.edu/ or at ftp://brian.la.asu.edu/pub/preprints/VB10.ps.gz, submitted to MNRAS
- Published
- 1996
21. Non-LTE model atmosphere analysis of the early ultraviolet spectra of nova OS Andromedae 1986
- Author
-
G. J. Schwarz, P. H. Hauschildt, S. Starrfield, E. Baron, F. Allard, S. N. Shore, and G. Sonneborn
- Subjects
Physics ,Absorption spectroscopy ,Astrophysics (astro-ph) ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Model parameters ,Astrophysics ,Nova (laser) ,medicine.disease_cause ,Spectral line ,Luminosity ,Atmosphere ,Space and Planetary Science ,medicine ,Astrophysics::Solar and Stellar Astrophysics ,Ultraviolet ,Astrophysics::Galaxy Astrophysics - Abstract
We have analyzed the early optically thick ultraviolet spectra of Nova OS And 1986 using a grid of spherically symmetric, non-LTE, line-blanketed, expanding model atmospheres and synthetic spectra with the following set of parameters: $5,000\le$ T$_{model}$ $\le 60,000$K, solar abundances, $\rho \propto r^{-3}$, $\v_{max} = 2000\kms$, $L=6 \times 10^{4}\Lsun$, and a statistical or microturbulent velocity of 50 $\kms$. We used the synthetic spectra to estimate the model parameters corresponding to the observed {\it IUE} spectra. The fits to the observations were then iteratively improved by changing the parameters of the model atmospheres, in particular T$_{model}$ and the abundances, to arrive at the best fits to the optically thick pseudo-continuum and the features found in the {\it IUE} spectra. The {\it IUE} spectra show two different optically thick subphases. The earliest spectra, taken a few days after maximum optical light, show a pseudo-continuum created by overlapping absorption lines. The later observations, taken approximately 3 weeks after maximum light, show the simultaneous presence of allowed, semi-forbidden, and forbidden lines in the observed spectra. Analysis of these phases indicate that OS And 86 had solar metallicities except for Mg which showed evidence of being underabundant by as much as a factor of 10. We determine a distance of 5.1 kpc to OS And 86 and derive a peak bolometric luminosity of $\sim$ 5 $\times$ 10$^4$ L$_{\odot}$. The computed nova parameters provide insights into the physics of the early outburst and explain the spectra seen by {\it IUE}. Lastly, we find evidence in the later observations for large non-LTE effects of Fe{\sc ii} which, when included, lead to much better agreement with the observations., Comment: 10 pages, latex, MNRASTEX, figures not included, full text plus figures available at http://brian.la.asu.edu or at ftp://brian.la.asu.edu/pub/preprints/NLTE_OSAnd_86.ps, MNRAS, in press
- Published
- 1996
- Full Text
- View/download PDF
22. Irradiated planets
- Author
-
P H Hauschildt, T Barman, and E Baron
- Subjects
Condensed Matter Physics ,Mathematical Physics ,Atomic and Molecular Physics, and Optics - Published
- 2008
- Full Text
- View/download PDF
23. Status of the physics of substellar objects project.
- Author
-
S. Viti, J. Tennyson, B. Barber, G. Harris, J. C. Pickering, R. Blackwell-Whitehead, J.-P. Champion, F. Allard, P. H. Hauschildt, U. G. Jorgensen, P. Ehrenfreund, E. Stachowska, H.-G. Ludwig, E. L. MartÍn, Ya. Pavlenko, Yu. Lyubchik, and R. L. Kurucz
- Published
- 2005
24. The low-mass companion of GQ Lup.
- Author
-
R. Neuhäuser, G. Wuchterl, M. Mugrauer, A. Bedalov, and P. H. Hauschildt
- Published
- 2005
25. Examining stellar atmospheres via microlensing.
- Author
-
C. Thurl, P. D. Sackett, and P. H. Hauschildt
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.