17,348 results on '"P. Guzmán"'
Search Results
2. [Translated article] Reactive Infectious Mucocutaneous Eruption (RIME): Expanding the Spectrum of Mucocutaneous Exanthems
- Author
-
P. Guzmán Tena, M. Rodríguez Ramos, C. Lloret Ruiz, and M.L. Vázquez Álvarez
- Subjects
Dermatology ,RL1-803 ,Internal medicine ,RC31-1245 - Published
- 2024
- Full Text
- View/download PDF
3. Introducing the construct of risky cannabis use: designing and piloting a co-created educational intervention on cannabis health literacy among adolescents and young adults. The CAHLY (CAnabis Health LiteracY) study.
- Author
-
E. Caballeria, C. Oliveras, P. Guzmán, M. Ballbé, B. Fleur, B. Pol, D. Ilzarbe, H. López-Pelayo, S. Matrai, M. Artigas, M. T. Pons-Cabrera, D. Folch, L. Nuño, and M. Balcells-Oliveró
- Subjects
Psychiatry ,RC435-571 - Abstract
Introduction Cannabis use poses a significant risk to the psychological wellbeing of youth, affecting academic performance and potentially triggering the onset of mental health issues. Providing young people with comprehensive information about patterns of cannabis use and specific factors that increase an individual’s health risks is crucial. The ability to critically assimilate this information is known as health literacy (HL). Objectives To design a psychoeducational intervention to increase HL on risky cannabis use among students aged 16-25, and to assess its usability and feasibility. Methods We designed a psychoeducational intervention based on the outcomes of a 3-hour co-creation session involving healthcare professionals and students. 29 university students and 25 high-school students completed this intervention and assessed its usability and feasibility with the SUS (System Usability Scale), PSSUQ (Post-Study System Usability Questionnaire) and additional open questions regarding the most and less-liked aspects of the intervention. Results The design phase resulted in an informative website (http://www.cahlyclinic.cat/) and a 1-hour structured onsite educator-facilitated session, comprising 3 group activities (completed on paper or online) addressing three dimensions of cannabis HL: searching for, interpreting and applying reliable information. Usability of the intervention was rated as excellent (SUS mean score>80). PSSUQ results indicate that students were satisfied with the intervention; found the HL information clear, relevant, and adequate for their needs; found the interface of the digital version pleasant and usable without support; and would recommend it to other students. Conclusions We propose an innovative structured and usable intervention, designed using a participatory approach, which aims to disseminate information on risky cannabis use to a key target population, namely young people. Disclosure of Interest None Declared
- Published
- 2024
- Full Text
- View/download PDF
4. The water, land and carbon footprint of conventional and organic dairy systems in the Netherlands and Spain. A case study into the consequences of ecological indicator selection and methodological choices
- Author
-
S. Bronts, P.W. Gerbens-Leenes, and P. Guzmán-Luna
- Subjects
Ecological indicator selection ,Water footprint ,Land footprint ,Carbon footprint ,Dairy systems ,Renewable energy sources ,TJ807-830 ,Agriculture (General) ,S1-972 - Abstract
Dairy farming systems are multifunctional processes that provide milk but also beef, veal and manure. These outputs provided by dairy farms are important foods for humans but their production require natural resources like water and land, and release emissions to the water and air contributing to climate change. Many studies quantified the environmental performance of dairy farms by using a life cycle assessment (LCA) or environmental footprint calculation. This study provides a better understanding of how different methodological decisions (e.g., the choice of system boundary, GHG metric, allocation procedure for multifunctionality, and multi-environmental indicators) influence the environmental performance calculation. From a footprinting point of view, the water footprints (WFs) (i.e., green, blue and grey), land footprints (LFs) and carbon footprints (CFs) of milk, beef and veal produced in two conventional (Dutch and Spanish) and an organic Dutch dairy system are estimated. Here the system boundaries are expanded so calve systems are included. Next, the use of different indicators is discussed, e.g., green WFs and the GWP100 or GWP20. The Dutch conventional system has relatively small footprints due to high efficiency. Green, blue and grey WFs per kg of milk are 0.62, 0.09 and 0.14 m3. The Spanish system has green, blue and grey WFs per kg of milk of 0.67, 0.15 and 0.09 m3; the Dutch organic system of 0.84, 0.13 and 0.26 m3. The Spanish system has the largest LF and CF, caused by feed import from countries with relatively low yields and transport greenhouse gas emissions. Dutch systems use more locally produced feed. Due to lower efficiency, the organic system has larger footprints than the Dutch conventional system. Expanding system boundaries to include calves results in an 8 to 15% CF increase. Green water dominates total WFs, an aspect excluded in LCA studies. For grey WFs, earlier studies only included nitrogen. However, if also pesticides would be included, results might be less favourable for systems relying on feed crops instead of grasslands. Also, water quality standards influence grey WFs. The study emphasizes that indicator choice influences final results. Indicators like animal welfare, biodiversity or pesticide use give different outcomes which might be more favourable for organic production.
- Published
- 2023
- Full Text
- View/download PDF
5. TiniScript: A Simplified Language for Educational Robotics
- Author
-
Ramos, Gabriel Gonzalo Guzman and Ramos, Pedro Jesus Guzman
- Subjects
Computer Science - Robotics ,K.3.2 ,I.2.9 - Abstract
TiniScript is an intermediate programming language designed for educational robotics, aligned with STEM principles to foster integrative learning experiences. With its minimalist single-line syntax, such as F(2, 80) , TiniScript simplifies robotic programming, allowing users to bypass complex code uploading processes and enabling realtime direct instruction transmission. Thanks to its preloaded interpreter, TiniScript decouples programming from hardware, significantly reducing wait times. Instructions can be sent wirelessly from any Bluetooth enabled device, making TiniScript adaptable to various robots. This adaptability optimizes iterative and collaborative learning, allowing students to focus on the creative aspects of robotics. This paper explores TiniScripts design principles, syntax, and practical applications, highlighting its potential to make robotics programming more accessible and effective in developing critical thinking skills., Comment: 10 pages, 5 figures. For associated resources and block-based programming interface, see tinibot.pe. This work explores TiniScripts design for simplified, real-time robotics programming aimed at educational environments, emphasizing accessibility and creative engagement in STEM learning
- Published
- 2024
6. Alternative Grit Models: Explorations into the Psychometric Properties of Grit-S and Academic Performance
- Author
-
Miguel Eduardo Uribe-Moreno, Iván Felipe Medina-Arboleda, Alfredo Guzmán-Rincón, and Suelen Emilia Castiblanco-Moreno
- Abstract
Grit, the passion for achieving long-term goals, has been conceived as a two-dimensional construct (Consistency of interest and Perseverance of effort). The construct is well known for its easy measurement and its relationship with performance, including academic performance. However, there have been different criticisms, such as the overlap of grit with other personality characteristics, the variability in the psychometric structure of the Grit-O and Grit-S tests, and the fact that some work reports a weak influence of grit on academic performance. Within this framework, this study contrasts different psychometric structures of the Grit-S scale and its relationship with the academic performance of higher education students. So, with this purpose, a dichotomous model of high and low grit, a K-medias clustering model, and three structural equation models have been tested. The results indicate that (a) there is a statistically significant relationship between grit--mainly determined by the consistency dimension--and academic performance, although it decreases when controlling for contextual variables, and (b) Consistency mediates the relationship between Perseverance and academic performance. The instability of grit to predict performance is discussed, and the thesis of a two-sub-dimensional structure is supported.
- Published
- 2024
7. Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Jin, H., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Metzler, Z., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., Zweizig, J., Furlan, S. B. Araujo, Arzoumanian, Z., Basu, A., Cassity, A., Cognard, I., Crowter, K., del Palacio, S., Espinoza, C. M., Fonseca, E., Flynn, C. M. L., Gancio, G., Garcia, F., Gendreau, K. C., Good, D. C., Guillemot, L., Guillot, S., Keith, M. J., Kuiper, L., Lower, M. E., Lyne, A. G., McKee, J. W., Meyers, B. W., Palfreyman, J. L., Pearlman, A. B., Romero, G. E., Shannon, R. M., Shaw, B., Stairs, I. H., Stappers, B. W., Tan, C. M., Theureau, G., Thompson, M., Weltevrede, P., and Zubieta, E.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of General Relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO--Virgo--KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering the single-harmonic and the dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is $6.4\!\times\!10^{-27}$ for the young energetic pulsar J0537-6910, while the lowest constraint on the ellipticity is $8.8\!\times\!10^{-9}$ for the bright nearby millisecond pulsar J0437-4715. Additionally, for a subset of 16 targets we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of non-standard polarizations as predicted by the Brans-Dicke theory., Comment: main paper: 12 pages, 6 figures, 4 tables
- Published
- 2025
8. Sidewalk Hazard Detection Using Variational Autoencoder and One-Class SVM
- Author
-
Guzman, Edgar and Howe, Robert D.
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning ,Computer Science - Robotics - Abstract
The unpredictable nature of outdoor settings introduces numerous safety concerns, making hazard detection crucial for safe navigation. This paper introduces a novel system for sidewalk safety navigation utilizing a hybrid approach that combines a Variational Autoencoder (VAE) with a One-Class Support Vector Machine (OCSVM). The system is designed to detect anomalies on sidewalks that could potentially pose walking hazards. A dataset comprising over 15,000 training frames and 5,000 testing frames was collected using video recordings, capturing various sidewalk scenarios, including normal and hazardous conditions. During deployment, the VAE utilizes its reconstruction mechanism to detect anomalies within a frame. Poor reconstruction by the VAE implies the presence of an anomaly, after which the OCSVM is used to confirm whether the anomaly is hazardous or non-hazardous. The proposed VAE model demonstrated strong performance, with a high Area Under the Curve (AUC) of 0.94, effectively distinguishing anomalies that could be potential hazards. The OCSVM is employed to reduce the detection of false hazard anomalies, such as manhole or water valve covers. This approach achieves an accuracy of 91.4%, providing a highly reliable system for distinguishing between hazardous and non-hazardous scenarios. These results suggest that the proposed system offers a robust solution for hazard detection in uncertain environments., Comment: 7 pages
- Published
- 2024
9. Microscopic imprints of learned solutions in adaptive resistor networks
- Author
-
Guzman, Marcel, Martins, Felipe, Stern, Menachem, and Liu, Andrea J.
- Subjects
Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Soft Condensed Matter ,Condensed Matter - Statistical Mechanics - Abstract
In physical networks trained using supervised learning, physical parameters are adjusted to produce desired responses to inputs. An example is electrical contrastive local learning networks of nodes connected by edges that are resistors that adjust their conductances during training. When an edge conductance changes, it upsets the current balance of every node. In response, physics adjusts the node voltages to minimize the dissipated power. Learning in these systems is therefore a coupled double-optimization process, in which the network descends both a cost landscape in the high-dimensional space of edge conductances, and a physical landscape -- the power -- in the high-dimensional space of node voltages. Because of this coupling, the physical landscape of a trained network contains information about the learned task. Here we demonstrate that all the physical information relevant to the trained input-output relation can be captured by a susceptibility, an experimentally measurable quantity. We supplement our theoretical results with simulations to show that the susceptibility is positively correlated with functional importance and that we can extract physical insight into how the system performs the task from the conductances of highly susceptible edges., Comment: 14 pages, 12 figures
- Published
- 2024
10. A theory of appropriateness with applications to generative artificial intelligence
- Author
-
Leibo, Joel Z., Vezhnevets, Alexander Sasha, Diaz, Manfred, Agapiou, John P., Cunningham, William A., Sunehag, Peter, Haas, Julia, Koster, Raphael, Duéñez-Guzmán, Edgar A., Isaac, William S., Piliouras, Georgios, Bileschi, Stanley M., Rahwan, Iyad, and Osindero, Simon
- Subjects
Computer Science - Artificial Intelligence - Abstract
What is appropriateness? Humans navigate a multi-scale mosaic of interlocking notions of what is appropriate for different situations. We act one way with our friends, another with our family, and yet another in the office. Likewise for AI, appropriate behavior for a comedy-writing assistant is not the same as appropriate behavior for a customer-service representative. What determines which actions are appropriate in which contexts? And what causes these standards to change over time? Since all judgments of AI appropriateness are ultimately made by humans, we need to understand how appropriateness guides human decision making in order to properly evaluate AI decision making and improve it. This paper presents a theory of appropriateness: how it functions in human society, how it may be implemented in the brain, and what it means for responsible deployment of generative AI technology., Comment: 115 pages, 2 figures
- Published
- 2024
11. Identifying Switching of Antiferromagnets by Spin-Orbit Torques
- Author
-
Jourdan, Martin, Bläßer, Jonathan, Gámez, Guzmán Orero, Reimers, Sonka, Odenbreit, Lukas, Fischer, Miriam, Niu, Yuran, Golias, Evangelos, Maccherozzi, Francesco, Kleibert, Armin, Stoll, Hermann, and Kläui, Mathias
- Subjects
Physics - Applied Physics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Antiferromagnets are promising candidates for ultrafast spintronic applications, leveraging current-induced spin-orbit torques. However, experimentally distinguishing between different switching mechanisms of the staggered magnetization (N\'eel vector) driven by current pulses remains a challenge. In an exemplary study of the collinear antiferromagnetic compound Mn$_2$Au, we demonstrate that slower thermomagnetoelastic effects predominantly govern switching over a wide parameter range. In the regime of short current pulses in the nanosecond range, however, we observe fully N\'eel spin-orbit torque driven switching. We show that this ultrafast mechanism enables the complete directional alignment of the N\'eel vector by current pulses in device structures., Comment: 8 pages, 6 figures
- Published
- 2024
12. $\pi$-yalli: un nouveau corpus pour le nahuatl
- Author
-
Torres-Moreno, Juan-Manuel, Guzmán-Landa, Juan-José, Ranger, Graham, Garrido, Martha Lorena Avendaño, Figueroa-Saavedra, Miguel, Quintana-Torres, Ligia, González-Gallardo, Carlos-Emiliano, Pontes, Elvys Linhares, Morales, Patricia Velázquez, and Jiménez, Luis-Gil Moreno
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence - Abstract
The NAHU$^2$ project is a Franco-Mexican collaboration aimed at building the $\pi$-YALLI corpus adapted to machine learning, which will subsequently be used to develop computer resources for the Nahuatl language. Nahuatl is a language with few computational resources, even though it is a living language spoken by around 2 million people. We have decided to build $\pi$-YALLI, a corpus that will enable to carry out research on Nahuatl in order to develop Language Models (LM), whether dynamic or not, which will make it possible to in turn enable the development of Natural Language Processing (NLP) tools such as: a) a grapheme unifier, b) a word segmenter, c) a POS grammatical analyser, d) a content-based Automatic Text Summarization; and possibly, e) a translator translator (probabilistic or learning-based)., Comment: 9 pages, in French language, 2 figures
- Published
- 2024
13. Black Holes as Condensation Points of Fuzzy Dark Matter Cores
- Author
-
Palomares-Chavez, Curicaveri, Alvarez-Rios, Ivan, and Guzman, Francisco S.
- Subjects
Astrophysics - Astrophysics of Galaxies ,General Relativity and Quantum Cosmology - Abstract
We simulate the formation of Fuzzy Dark Matter (FDM) cores in the presence of a Black Hole (BH) to explore whether BHs can serve as seeds for FDM core condensation. Our analysis is based on the core-condensation via the kinetic relaxation process for random initial conditions of the FDM. We show that in general the BH merges with pre-collapsed mini-clusters and once they share location the BH oscillates within the core. The condensation takes place around the black hole and the FDM acquires a density profile consistent with the density of the stationary solution of the FDM+BH eigenvalue problem in average. The central density of the resulting core depends on the mass of the BH, which due to its motion relative to the FDM cloud produces a smaller time-averaged densities for bigger BH masses, which lead to a new diversity of central FDM core densities. Our results indicate that BHs can indeed act as focal points for FDM core condensation. As a collateral result, for our analysis we revised the construction of stationary solutions of FDM+BH and found a phenomenological formula for the FDM density that can be used to fit FDM cores around BHs., Comment: 8 pages, 8 figures
- Published
- 2024
14. Fermion-Boson Stars as Attractors in Fuzzy Dark Matter and Ideal Gas Dynamics
- Author
-
Alvarez-Rios, Ivan, Guzman, Francisco S., and Niemeyer, Jens
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology - Abstract
In the context of Fuzzy Dark Matter (FDM) we study the core formation in the presence of an Ideal Gas (IG). Our analysis is based on the solution of the Schr\"odinger-Poisson-Euler system of equations that drives the evolution of FDM together with a compressible IG, both coupled through the gravitational potential they produce. Starting from random initial conditions for both FDM and IG, with dominant FDM, we study the evolution of the system until it forms a nearly relaxed, virialized and close to hydrostatic equilibrium core, surrounded by an envelope of the two components. We find that the core corresponds to Newtonian Fermion-Boson Stars (FBS). If the IG is used to model luminous matter, our results indicate that FBS behave as attractor core solutions of structure formation of FDM along with baryonic matter., Comment: 6 pages, 5 figures
- Published
- 2024
15. Numerical Solution Partial Differential Equations using the Discrete Fourier Transform
- Author
-
Rodriguez-Lara, Daniela, Alvarez-Rios, Ivan, and Guzman, Francisco S.
- Subjects
Mathematics - Numerical Analysis ,Physics - Computational Physics - Abstract
In this paper we explain how to use the Fast Fourier Transform (FFT) to solve partial differential equations (PDEs). We start by defining appropriate discrete domains in coordinate and frequency domains. Then describe the main limitation of the method arising from the Sampling Theorem, which defines the critical Nyquist frequency and the aliasing effect. We then define the Fourier Transform (FT) and the FFT in a way that can be implemented in one and more dimensions. Finally, we show how to apply the FFT in the solution of PDEs related to problems involving two spatial dimensions, specifically the Poisson equation, the diffusion equation and the wave equation for elliptic, parabolic and hyperbolic cases respectively., Comment: Prepared for educational purposes, 9 pages, 9 figures. Accepted for publication in the educative section of Revista Mexicana de Fisica
- Published
- 2024
16. Discrete Poincar\'e inequalities: a review on proofs, equivalent formulations, and behavior of constants
- Author
-
Ern, Alexandre, Guzmán, Johnny, Potu, Pratyush, and Vohralík, Martin
- Subjects
Mathematics - Numerical Analysis - Abstract
We investigate discrete Poincar\'e inequalities on piecewise polynomial subspaces of the Sobolev spaces H(curl) and H(div) in three space dimensions. We characterize the dependence of the constants on the continuous-level constants, the shape regularity and cardinality of the underlying tetrahedral mesh, and the polynomial degree. One important focus is on meshes being local patches (stars) of tetrahedra from a larger tetrahedral mesh. We also review various equivalent results to the discrete Poincar\'e inequalities, namely stability of discrete constrained minimization problems, discrete inf-sup conditions, bounds on operator norms of piecewise polynomial vector potential operators (Poincar\'e maps), and existence of graph-stable commuting projections.
- Published
- 2024
17. Task-Based Role-Playing VR Game for Supporting Intellectual Disability Therapies
- Author
-
Chen, Wen-Chun, Berrezueta-Guzman, Santiago, and Wagner, Stefan
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Software Engineering - Abstract
Intellectual Disability (ID) is characterized by deficits in intellectual functioning and adaptive behavior, necessitating customized therapeutic interventions to improve daily life skills. This paper presents the development and evaluation of Space Exodus, a task-based role-playing Virtual Reality (VR) game designed to support therapy for children with ID. The game integrates everyday life scenarios into an immersive environment to enhance skill acquisition and transfer. Functional tests and preliminary experiments demonstrated the system's stability, usability, and adaptability, with 70--80\% of participants demonstrating successful skill transfer to new challenges. Challenges, such as VR discomfort, controller misoperation, and task complexity, were identified, emphasizing the need for ergonomic improvements and adaptive guidance. The results provide empirical evidence supporting VR as a promising tool in ID therapy. Future work will focus on refining gameplay mechanics, enhancing user guidance, and expanding accessibility to broader populations., Comment: Accepted paper at the 7th IEEE International Conference on Artificial Intelligence & eXtended and Virtual Reality
- Published
- 2024
18. Adapting Atmospheric Chemistry Components for Efficient GPU Accelerators
- Author
-
Ruiz, Christian Guzman, Dawson, Matthew, Acosta, Mario C., Jorba, Oriol, Galobardes, Eduardo Cesar, García-Pando, Carlos Pérez, and Serradell, Kim
- Subjects
Physics - Computational Physics ,Computer Science - Hardware Architecture - Abstract
Atmospheric models demand a lot of computational power and solving the chemical processes is one of its most computationally intensive components. This work shows how to improve the computational performance of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH), a chemical weather prediction system developed by the Barcelona Supercomputing Center. The model implements the new flexible external package Chemistry Across Multiple Phases (CAMP) for the solving of gas- and aerosol-phase chemical processes, that allows multiple chemical processes to be solved simultaneously as a single system. We introduce a novel strategy to simultaneously solve multiple instances of a chemical mechanism, represented in the model as grid-cells, obtaining a speedup up to 9x using thousands of cells. In addition, we present a GPU strategy for the most time-consuming function of CAMP. The GPU version achieves up to 1.2x speedup compared to CPU. Also, we optimize the memory access in the GPU to increase its speedup up to 1.7x.
- Published
- 2024
- Full Text
- View/download PDF
19. The EFT of Large Spin Mesons
- Author
-
Cuomo, Gabriel, Dubovsky, Sergei, Hernández-Chifflet, Guzmán, Monin, Alexander, and Zare, Shahrzad
- Subjects
High Energy Physics - Theory ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology - Abstract
We use effective string theory to study mesons with large spin $J$ in large $N_c$ QCD as rotating open strings. In the first part of this work, we formulate a consistent effective field theory (EFT) for open spinning strings with light quarks. Our EFT provides a consistent treatment of the endpoints' singularities that arise in the massless limit. We obtain results, in a systematic $1/J$ expansion, for the spectrum of the leading and daughter Regge trajectories. Interestingly, we find that the redshift factor associated with the quarks' acceleration implies that the applicability regime of the EFT is narrower compared to that of static flux tubes. In the second part of this work, we discuss several extensions of phenomenological interests, including mesons with heavy quarks, the quarks' spin and the daughter Regge trajectories associated with the worldsheet axion, a massive string mode identified in lattice simulations of $4d$ flux tubes. We compare our predictions with $4d$ QCD spectroscopy data, and suggest potential $stringy$ interpretations of the observed mesons. We finally comment on the relation between the EFT spectrum and the Axionic String Ansatz, a recently proposed characterization of the spectrum of Yang-Mills glueballs., Comment: 66 pages+appendices
- Published
- 2024
20. Mayfly: Private Aggregate Insights from Ephemeral Streams of On-Device User Data
- Author
-
Bian, Christopher, Cheu, Albert, Chiknavaryan, Stanislav, Gong, Zoe, Gruteser, Marco, Guinan, Oliver, Guzman, Yannis, Kairouz, Peter, Lagzdin, Artem, McKenna, Ryan, Ni, Grace, Roth, Edo, Spivak, Maya, Van Overveldt, Timon, and Yi, Ren
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Databases ,H.2.8 ,K.4.1 ,H.4 - Abstract
This paper introduces Mayfly, a federated analytics approach enabling aggregate queries over ephemeral on-device data streams without central persistence of sensitive user data. Mayfly minimizes data via on-device windowing and contribution bounding through SQL-programmability, anonymizes user data via streaming differential privacy (DP), and mandates immediate in-memory cross-device aggregation on the server -- ensuring only privatized aggregates are revealed to data analysts. Deployed for a sustainability use case estimating transportation carbon emissions from private location data, Mayfly computed over 4 million statistics across more than 500 million devices with a per-device, per-week DP $\varepsilon = 2$ while meeting strict data utility requirements. To achieve this, we designed a new DP mechanism for Group-By-Sum workloads leveraging statistical properties of location data, with potential applicability to other domains., Comment: 22 pages, 7 figures
- Published
- 2024
21. Order Theory in the Context of Machine Learning: an application
- Author
-
Dolores-Cuenca, Eric, Guzman-Saenz, Aldo, Kim, Sangil, Lopez-Moreno, Susana, and Mendoza-Cortes, Jose
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence ,Mathematics - Category Theory ,68T07, 06A99, 68T05, 18M60, 52B11, 68Q55, 14T10, 06F99 ,I.2.6 ,I.5.1 - Abstract
The paper ``Tropical Geometry of Deep Neural Networks'' by L. Zhang et al. introduces an equivalence between integer-valued neural networks (IVNN) with activation $\text{ReLU}_{t}$ and tropical rational functions, which come with a map to polytopes. Here, IVNN refers to a network with integer weights but real biases, and $\text{ReLU}_{t}$ is defined as $\text{ReLU}_{t}(x)=\max(x,t)$ for $t\in\mathbb{R}\cup\{-\infty\}$. For every poset with $n$ points, there exists a corresponding order polytope, i.e., a convex polytope in the unit cube $[0,1]^n$ whose coordinates obey the inequalities of the poset. We study neural networks whose associated polytope is an order polytope. We then explain how posets with four points induce neural networks that can be interpreted as $2\times 2$ convolutional filters. These poset filters can be added to any neural network, not only IVNN. Similarly to maxout, poset convolutional filters update the weights of the neural network during backpropagation with more precision than average pooling, max pooling, or mixed pooling, without the need to train extra parameters. We report experiments that support our statements. We also prove that the assignment from a poset to an order polytope (and to certain tropical polynomials) is one to one, and we define the structure of algebra over the operad of posets on tropical polynomials., Comment: Poster presentation in NeuroIPS WIML 2024
- Published
- 2024
22. Noncommutative Model Selection for Data Clustering and Dimension Reduction Using Relative von Neumann Entropy
- Author
-
Guzmán-Tristán, Araceli and Rieser, Antonio
- Subjects
Statistics - Machine Learning ,Computer Science - Machine Learning ,Statistics - Other Statistics - Abstract
We propose a pair of completely data-driven algorithms for unsupervised classification and dimension reduction, and we empirically study their performance on a number of data sets, both simulated data in three-dimensions and images from the COIL-20 data set. The algorithms take as input a set of points sampled from a uniform distribution supported on a metric space, the latter embedded in an ambient metric space, and they output a clustering or reduction of dimension of the data. They work by constructing a natural family of graphs from the data and selecting the graph which maximizes the relative von Neumann entropy of certain normalized heat operators constructed from the graphs. Once the appropriate graph is selected, the eigenvectors of the graph Laplacian may be used to reduce the dimension of the data, and clusters in the data may be identified with the kernel of the associated graph Laplacian. Notably, these algorithms do not require information about the size of a neighborhood or the desired number of clusters as input, in contrast to popular algorithms such as $k$-means, and even more modern spectral methods such as Laplacian eigenmaps, among others. In our computational experiments, our clustering algorithm outperforms $k$-means clustering on data sets with non-trivial geometry and topology, in particular data whose clusters are not concentrated around a specific point, and our dimension reduction algorithm is shown to work well in several simple examples., Comment: 20 pages
- Published
- 2024
23. Noncommutative Model Selection and the Data-Driven Estimation of Real Cohomology Groups
- Author
-
Guzmán-Tristán, Araceli, Rieser, Antonio, and Velázquez-Richards, Eduardo
- Subjects
Computer Science - Computational Geometry ,Computer Science - Machine Learning ,Mathematics - Algebraic Topology - Abstract
We propose three completely data-driven methods for estimating the real cohomology groups $H^k (X ; \mathbb{R})$ of a compact metric-measure space $(X, d_X, \mu_X)$ embedded in a metric-measure space $(Y,d_Y,\mu_Y)$, given a finite set of points $S$ sampled from a uniform distrbution $\mu_X$ on $X$, possibly corrupted with noise from $Y$. We present the results of several computational experiments in the case that $X$ is embedded in $\mathbb{R}^n$, where two of the three algorithms performed well., Comment: 15 pages, sequel to "Noncommutative Model Selection for Data Clustering and Dimension Reduction Using Relative von Neumann Entropy"
- Published
- 2024
24. Grand Challenges in the Verification of Autonomous Systems
- Author
-
Leahy, Kevin, Asgari, Hamid, Dennis, Louise A., Feather, Martin S., Fisher, Michael, Ibanez-Guzman, Javier, Logan, Brian, Olszewska, Joanna I., and Redfield, Signe
- Subjects
Computer Science - Robotics - Abstract
Autonomous systems use independent decision-making with only limited human intervention to accomplish goals in complex and unpredictable environments. As the autonomy technologies that underpin them continue to advance, these systems will find their way into an increasing number of applications in an ever wider range of settings. If we are to deploy them to perform safety-critical or mission-critical roles, it is imperative that we have justified confidence in their safe and correct operation. Verification is the process by which such confidence is established. However, autonomous systems pose challenges to existing verification practices. This paper highlights viewpoints of the Roadmap Working Group of the IEEE Robotics and Automation Society Technical Committee for Verification of Autonomous Systems, identifying these grand challenges, and providing a vision for future research efforts that will be needed to address them.
- Published
- 2024
25. Quadrupole-hexadecapole correlations in neutron-rich samarium and gadolinium isotopes
- Author
-
Lotina, L., Nomura, K., Rodríguez-Guzmán, R., and Robledo, L. M.
- Subjects
Nuclear Theory ,Nuclear Experiment - Abstract
We present an extensive study of quadrupole-hexadecapole correlation effects in even-even Sm and Gd isotopes with neutron number $N=88-106$. The calculations are performed in the framework of the Gogny energy density functional (EDF) with the D1S parametrization and the $sdg$ interacting boson model (IBM). The quadrupole-hexadecapole constrained self-consistent mean-field potential energy surface is mapped onto the expectation value of the $sdg$-boson Hamiltonian. This procedure determines the parameters of the $sdg$-IBM Hamiltonian microscopically. Calculated excitation energies and transition strengths are compared to the ones obtained with a simpler $sd$-IBM, as well as with the experimental data. The Gogny-EDF mapped $sdg$-IBM reproduces spectroscopic properties of the studied nuclei as reasonably as in the case of the previous $sdg$-boson mapping calculations that were based on the relativistic EDF, indicating that the axial quadrupole-hexadecapole method is sound regardless of whether relativistic or nonrelativistic EDF is employed. The mapped $sdg$-IBM improves some of the results in lighter Sm and Gd isotopes compared to the mapped $sd$-IBM, implying the existence of significant hexadecapole correlations in those nuclei. For those nuclei with $N \geq 94$, hexadecapole effects are minor, and the only significant difference between the two boson models can be found in the description of $E0$ monopole transitions., Comment: 12 pages, 12 figures
- Published
- 2024
26. Hereditary First-Order Model Checking
- Author
-
Bodirsky, Manuel and Guzmán-Pro, Santiago
- Subjects
Mathematics - Logic ,Computer Science - Computational Complexity ,Computer Science - Discrete Mathematics ,Computer Science - Logic in Computer Science ,03B16, 03B70, 03C13 ,F.1.3 ,F.4.1 - Abstract
Many computational problems can be modelled as the class of all finite relational structures $\mathbb A$ that satisfy a fixed first-order sentence $\phi$ hereditarily, i.e., we require that every substructure of $\mathbb A$ satisfies $\phi$. In this case, we say that the class is in HerFO. The problems in HerFO are always in coNP, and sometimes coNP-complete. HerFO also contains many interesting computational problems in P, including many constraint satisfaction problems (CSPs). We show that HerFO captures the class of complements of CSPs for reducts of finitely bounded structures, i.e., every such CSP is polynomial-time equivalent to the complement of a problem in HerFO. However, we also prove that HerFO does not have the full computational power of coNP: there are problems in coNP that are not polynomial-time equivalent to a problem in HerFO, unless E=NE. Another main result is a description of the quantifier-prefixes for $\phi$ such that hereditarily checking $\phi$ is in P; we show that for every other quantifier-prefix there exists a formula $\phi$ with this prefix such that hereditarily checking $\phi$ is coNP-complete.
- Published
- 2024
27. Einstein metrics on the full flag $F(n)$
- Author
-
Guzman, Mikhail R.
- Subjects
Mathematics - Differential Geometry - Abstract
Let $ M = G/K $ be a full flag manifold. In this work, we investigate the $ G$-stability of Einstein metrics on $M$ and analyze their stability types, including coindices, for several cases. We specifically focus on $F(n) = \mathrm{SU}(n)/T$, emphasizing $n = 5$, where we identify four new Einstein metrics in addition to known ones. Stability data, including coindex and Hessian spectrum, confirms that these metrics on $F(5)$ are pairwise non-homothetic, providing new insights into the finiteness conjecture., Comment: 15
- Published
- 2024
28. Measurement of the emittance of accelerated electron bunches at the AWAKE experiment
- Author
-
Cooke, D. A., Pannell, F., Della Porta, G. Zevi, Farmer, J., Bencini, V., Bergamaschi, M., Mazzoni, S., Ranc, L., Senes, E., Sherwood, P., Wing, M., Agnello, R., Ahdida, C. C., Amoedo, C., Andrebe, Y., Apsimon, O., Apsimon, R., Arnesano, J. M., Blanchard, P., Burrows, P. N., Buttenschön, B., Caldwell, A., Chung, M., Clairembaud, A., Davut, C., Demeter, G., Dexter, A. C., Doebert, S., Fasoli, A., Fonseca, R., Furno, I., van Gils, N. Z., Granados, E., Granetzny, M., Graubner, T., Grulke, O., Gschwendtner, E., Guran, E., Henderson, J., Kedves, M. Á., Kraus, F., Krupa, M., Lefevre, T., Liang, L., Liu, S., Lopes, N., Lotov, K., Calderon, M. Martinez, Mezger, J., Guzmán, P. I. Morales, Moreira, M., Nechaeva, T., Okhotnikov, N., Pakuza, C., Pardons, A., Pepitone, K., Poimendidou, E., Pucek, J., Pukhov, A., Ramjiawan, R. L., Rey, S., Rossel, R., Saberi, H., Schmitz, O., Silva, F., Silva, L., Spear, B., Stollberg, C., Sublet, A., Swain, C., Topaloudis, A., Tuev, N. TorradoP., Velotti, F., Verzilov, V., Vieira, J., Walter, E., Welsch, C., Wendt, M., Wolfenden, J., Woolley, B., Xia, G., Verra, L., Yarygova, V., and Zepp, M.
- Subjects
Physics - Accelerator Physics - Abstract
The vertical plane transverse emittance of accelerated electron bunches at the AWAKE experiment at CERN has been determined, using three different methods of data analysis. This is a proof-of-principle measurement using the existing AWAKE electron spectrometer to validate the measurement technique. Large values of the geometric emittance, compared to that of the injection beam, are observed ($\sim \SI{0.5}{\milli\metre\milli\radian}$ compared with $\sim \SI{0.08}{\milli\metre\milli\radian}$), which is in line with expectations of emittance growth arising from plasma density ramps and large injection beam bunch size. Future iterations of AWAKE are anticipated to operate in conditions where emittance growth is better controlled, and the effects of the imaging systems of the existing and future spectrometer designs on the ability to measure the emittance are discussed. Good performance of the instrument down to geometric emittances of approximately $\SI{1e-4}{\milli\metre\milli\radian}$ is required, which may be possible with improved electron optics and imaging., Comment: 20 pages, 9 figures
- Published
- 2024
29. Non-Euclidean High-Order Smooth Convex Optimization
- Author
-
Contreras, Juan Pablo, Guzmán, Cristóbal, and Martínez-Rubio, David
- Subjects
Mathematics - Optimization and Control ,Computer Science - Data Structures and Algorithms ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
We develop algorithms for the optimization of convex objectives that have H\"older continuous $q$-th derivatives with respect to a $p$-norm by using a $q$-th order oracle, for $p, q \geq 1$. We can also optimize other structured functions. We do this by developing a non-Euclidean inexact accelerated proximal point method that makes use of an inexact uniformly convex regularizer. We also provide nearly matching lower bounds for any deterministic algorithm that interacts with the function via a local oracle.
- Published
- 2024
30. Control of the classical dynamics of a particle in the Morse-soft-Coulomb potential
- Author
-
Amici, Gabriel Albertin, Morán, José Andrés Guzmán, and de Lima, Emanuel Fernandes
- Subjects
Nonlinear Sciences - Chaotic Dynamics ,Physics - Atomic Physics - Abstract
We introduce the one-dimensional Morse-soft-Coulomb (MsC) potential consisting of a Morse repulsive barrier smoothly connected with a soft-core Coulomb potential at the origin. This new potential has a single parameter that controls the softness of the repulsive barrier and the well depth. When this softening-depth parameter tends to zero, the MsC potential approaches the Coulomb potential with an infinite repulsive barrier, a known successful model for the hydrogen atom. We investigate the classical chaotic dynamics of the MsC potential subjected to time-dependent external fields, comparing the results with the Coulomb potential. We show that the MsC potential reproduces the dynamics and the ionization probabilities of the Coulomb potential for sufficiently small values of the softening parameter. We also investigate the role of the softening parameter in the phase-space structures, showing that the increasing of its value leads to the increasing of the chaotic sea and consequently to the rise of the ionization probability. Finally, we address the problem of controlling the dynamics of a particle in the MsC potential from the perspective of optimal control theory, which cannot be easily applied in the case of the Coulomb potential due to the singularity at the origin. We analize a particular optimal solution to the problem of transferring a given amount of energy to the system at minimum cost. Our results show that the MsC potential can be a useful simple model for investigating the hydrogen atom.
- Published
- 2024
31. Characterization of Spatial-Temporal Channel Statistics from Measurement Data at D Band
- Author
-
Weragama, Chathuri, Kokkoniemi, Joonas, De Guzman, Mar Francis, Haneda, Katsuyuki, Kÿosti, Pekka, and Juntti, Markku
- Subjects
Computer Science - Information Theory ,Electrical Engineering and Systems Science - Signal Processing - Abstract
Millimeter-Wave (mmWave) (30-300 GHz) and D band (110-170 GHz) frequencies are poised to play a pivotal role in the advancement of sixth-generation (6G) systems and beyond with increased demand for greater bandwidth and capacity. This paper focuses on deriving a generalized channel impulse response for mmWave communications, considering both outdoor and indoor locations for line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The analysis is based on statistical insights obtained from measurements conducted at distinct locations with a center frequency of 142 GHz, examining parameters such as path gain, delay, number of paths (NoP), and angle distributions. Whereas different distributions serve as candidate models for the gain of LOS communications, only specific distributions accurately describe the NLOS gain, LOS and NLOS delay, LOS and NLOS NoP, and LOS and NLOS angular distributions. The channel is modeled based on geometry-based stochastic channel modeling (GBSM) with parameters derived from the statistical analysis. The maximum excess delay is used as a metric to evaluate the performance of the proposed model against empirical data., Comment: arXiv admin note: text overlap with arXiv:2403.18713
- Published
- 2024
32. Private Algorithms for Stochastic Saddle Points and Variational Inequalities: Beyond Euclidean Geometry
- Author
-
Bassily, Raef, Guzmán, Cristóbal, and Menart, Michael
- Subjects
Computer Science - Machine Learning ,Computer Science - Cryptography and Security ,Mathematics - Optimization and Control ,Statistics - Machine Learning - Abstract
In this work, we conduct a systematic study of stochastic saddle point problems (SSP) and stochastic variational inequalities (SVI) under the constraint of $(\epsilon,\delta)$-differential privacy (DP) in both Euclidean and non-Euclidean setups. We first consider Lipschitz convex-concave SSPs in the $\ell_p/\ell_q$ setup, $p,q\in[1,2]$. Here, we obtain a bound of $\tilde{O}\big(\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\epsilon}\big)$ on the strong SP-gap, where $n$ is the number of samples and $d$ is the dimension. This rate is nearly optimal for any $p,q\in[1,2]$. Without additional assumptions, such as smoothness or linearity requirements, prior work under DP has only obtained this rate when $p=q=2$ (i.e., only in the Euclidean setup). Further, existing algorithms have each only been shown to work for specific settings of $p$ and $q$ and under certain assumptions on the loss and the feasible set, whereas we provide a general algorithm for DP SSPs whenever $p,q\in[1,2]$. Our result is obtained via a novel analysis of the recursive regularization algorithm. In particular, we develop new tools for analyzing generalization, which may be of independent interest. Next, we turn our attention towards SVIs with a monotone, bounded and Lipschitz operator and consider $\ell_p$-setups, $p\in[1,2]$. Here, we provide the first analysis which obtains a bound on the strong VI-gap of $\tilde{O}\big(\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\epsilon}\big)$. For $p-1=\Omega(1)$, this rate is near optimal due to existing lower bounds. To obtain this result, we develop a modified version of recursive regularization. Our analysis builds on the techniques we develop for SSPs as well as employing additional novel components which handle difficulties arising from adapting the recursive regularization framework to SVIs.
- Published
- 2024
33. Emulating a quantum Maxwell's demon with non-separable structured light
- Author
-
Medina-Segura, Edgar, Obando, Paola C., Mkhumbuza, Light, Galvez, Enrique J., Rosales-Guzmán, Carmelo, Ruffato, Gianluca, Romanato, Filippo, Forbes, Andrew, and Nape, Isaac
- Subjects
Physics - Optics ,Quantum Physics - Abstract
Maxwell's demon (MD) has proven an instructive vehicle by which to explore the relationship between information theory and thermodynamics, fueling the possibility of information driven machines. A long standing debate has been the concern of entropy violation, now resolved by the introduction of a quantum MD, but this theoretical suggestion has proven experimentally challenging. Here, we use classical vectorially structured light that is non-separable in spin and orbital angular momentum to emulate a quantum MD experiment. Our classically entangled light fields have all the salient properties necessary of their quantum counterparts but without the experimental complexity of controlling quantum entangled states. We use our experiment to show that the demon's entropy increases during the process while the system's entropy decreases, so that the total entropy is conserved through an exchange of information, confirming the theoretical prediction. We show that our MD is able to extract useful work from the system in the form of orbital angular momentum, opening a path to information driven optical spanners for the mechanical rotation of objects with light. Our synthetic dimensions of angular momentum can easily be extrapolated to other degrees of freedom, for scalable and robust implementations of MDs at both the classical and quantum realms, enlightening the role of a structured light MD and its capability to control and measure information., Comment: 14 pages, 6 Figures
- Published
- 2024
34. Rocky Mountain Spotted Fever in Mexico: A Call to Action.
- Author
-
Álvarez-Hernández, Gerardo, López-Ridaura, Ruy, Cortés-Alcalá, Ricardo, García Rodríguez, Gabriel, Calleja-López, J, Rivera-Rosas, Cristian, Alomía-Zegarra, José, Brophy, Maureen, Brito-Lorán, Carina, Del Carmen Candia-Plata, Maria, Ceballos-Liceaga, Santa, Correa-Morales, Fabián, Dzul-Rosado, Karla, Foley, Janet, Galván-Moroyoqui, José, Ganta, Roman, Gutiérrez-Cedillo, Verónica, Hernández-Milán, Néstor, López-Pérez, Andrés, López-Soto, Luis, Martínez-Soto, Juan, Mata-Pineda, Ana, Paddock, Christopher, Ruiz-González, Irma, Salinas-Aguirre, Juan, Salzer, Johanna, Sánchez-Montes, Sokani, Soto-Guzmán, Adriana, Tamez-Rivera, Óscar, Wagner, David, and Walker, David
- Subjects
Rocky Mountain Spotted Fever ,Humans ,Mexico ,Disease Outbreaks ,Incidence ,Public Health - Abstract
Rocky Mountain spotted fever (RMSF) is an ongoing public health crisis in Mexico, particularly in states bordering the United States. The national highest incidence and mortality of RMSF occur in this region, resulting in a case-fatality rate that ranges annually between 10% and 50%, primarily affecting vulnerable groups such as children, elderly adults, and persons living in poverty. Multiple biological, environmental, and social determinants can explain its growing presence throughout the country and how it challenges the health system and society. It is necessary to integrate resources and capacities from health authorities, research centers, and society to succeed in dealing with this problem. Through a scientific symposium, a group of academicians, U.S. health officials, and Mexican health authorities met on November 8-10, 2023, in Hermosillo, Mexico, to discuss the current situation of RMSF across the country and the challenges associated with its occurrence. An urgent call for action to improve national capacity against RMSF in the aspects of epidemiological and acarological surveillance, diagnosis, medical care, case and outbreak prevention, health promotion, and research was urged by the experts. The One Health approach is a proven multidisciplinary strategy to integrate policies and interventions to mitigate and prevent the burden of cases, deaths, and suffering caused by RMSF in Mexico.
- Published
- 2024
35. First Detection of Molecular Gas in the Giant Low Surface Brightness Galaxy Malin 1
- Author
-
Galaz, Gaspar, González-López, Jorge, Guzmán, Viviana, Messias, Hugo, Junais, Boissier, Samuel, Epinat, Benoît, Weilbacher, Peter M., Puzia, Thomas, Johnston, Evelyn J., Amram, Philippe, Frayer, David, Blaña, Matías, Howk, J. Christopher, Berg, Michelle, Bustos-Espinoza, Roy, Muñoz-Mateos, Juan Carlos, Cortés, Paulo, García-Appadoo, Diego, and Joachimi, Katerine
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
After over three decades of unsuccessful attempts, we report the first detection of molecular gas emission in Malin 1, the largest spiral galaxy observed to date, and one of the most iconic giant low surface brightness galaxies. Using ALMA, we detect significant $^{12}$CO(J=1-0) emission in the galaxy's central region and tentatively identify CO emission across three regions on the disc. These observations allow for a better estimate of the H$_2$ mass and molecular gas mass surface density, both of which are remarkably low given the galaxy's scale. By integrating data on its HI mass, we derive a very low molecular-to-atomic gas mass ratio. Overall, our results highlight the minimal presence of molecular gas in Malin 1, contrasting sharply with its extensive, homogeneous atomic gas reservoir. For the first time, we position Malin 1 on the Kennicutt-Schmidt (K-S) diagram, where it falls below the main sequence for normal spirals, consistent with previous upper limits but now with more accurate figures. These findings are crucial for constraining our understanding of star formation processes in environments characterized by extremely low molecular gas densities and for refining models of galaxy formation, thereby improving predictions concerning the formation, evolution, and distribution of these giant, elusive galaxies., Comment: Accepted for publication in The Astrophysical Journal Letters. Published
- Published
- 2024
- Full Text
- View/download PDF
36. Code Collaborate: Dissecting Team Dynamics in First-Semester Programming Students
- Author
-
Berrezueta-Guzman, Santiago, Bassner, Patrick, Wagner, Stefan, and Krusche, Stephan
- Subjects
Computer Science - Software Engineering - Abstract
Understanding collaboration patterns in introductory programming courses is essential, as teamwork is a critical skill in computer science. In professional environments, software development relies on effective teamwork, navigating diverse perspectives, and contributing to shared goals. This paper offers a comprehensive analysis of the factors influencing team efficiency and project success, providing actionable insights to enhance the effectiveness of collaborative programming education. By analyzing version control data, survey responses, and performance metrics, the study highlights the collaboration trends that emerge as first-semester students develop a 2D game project. Results indicate that students often slightly overestimate their contributions, with more engaged individuals more likely to acknowledge mistakes. Team performance shows no significant variation based on nationality or gender composition, though teams that disbanded frequently consisted of lone wolves, highlighting collaboration challenges and the need for strengthened teamwork skills. Presentations closely reflected individual project contributions, with active students excelling in evaluative questioning and performing better on the final exam. Additionally, the complete absence of plagiarism underscores the effectiveness of proactive academic integrity measures, reinforcing honest collaboration in educational settings., Comment: The final version accepted at the conference IEEE International Conference on IT in Higher Education and Training (ITHET 2025)
- Published
- 2024
37. Multi-view biomedical foundation models for molecule-target and property prediction
- Author
-
Suryanarayanan, Parthasarathy, Qiu, Yunguang, Sethi, Shreyans, Mahajan, Diwakar, Li, Hongyang, Yang, Yuxin, Eyigoz, Elif, Saenz, Aldo Guzman, Platt, Daniel E., Rumbell, Timothy H., Ng, Kenney, Dey, Sanjoy, Burch, Myson, Kwon, Bum Chul, Meyer, Pablo, Cheng, Feixiong, Hu, Jianying, and Morrone, Joseph A.
- Subjects
Quantitative Biology - Biomolecules ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Foundation models applied to bio-molecular space hold promise to accelerate drug discovery. Molecular representation is key to building such models. Previous works have typically focused on a single representation or view of the molecules. Here, we develop a multi-view foundation model approach, that integrates molecular views of graph, image and text. Single-view foundation models are each pre-trained on a dataset of up to 200M molecules and then aggregated into combined representations. Our multi-view model is validated on a diverse set of 18 tasks, encompassing ligand-protein binding, molecular solubility, metabolism and toxicity. We show that the multi-view models perform robustly and are able to balance the strengths and weaknesses of specific views. We then apply this model to screen compounds against a large (>100 targets) set of G Protein-Coupled receptors (GPCRs). From this library of targets, we identify 33 that are related to Alzheimer's disease. On this subset, we employ our model to identify strong binders, which are validated through structure-based modeling and identification of key binding motifs., Comment: 34 pages including supplement. 9 figures, 4 tables
- Published
- 2024
38. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
39. Structured Light\'s Applications: A perspective
- Author
-
Rosales-Guzmán, Carmelo and Rodriguez-Fajardo, Valeria
- Subjects
Physics - Optics - Abstract
For the past few decades, structured light has been gaining popularity across various research fields. Its fascinating properties have been exploited for both previously unforeseen and established applications from new perspectives. Crucial to this is the several techniques that have been proposed for both their generation and characterisation. On one hand, the former has been boosted by the invention of computer-controlled devices, which combined with a few optical components allow flexible and complete control of the spatial and polarisation degrees of freedom on light, thus enabling a plethora of proof-of-principle experiments for novel and old applications. On the other hand, characterising light beams is important not only for gaining better insights into light's properties but also for potentially being used as metrics. In this perspective, we thus offer our take on a few key applied research fields where structured light is particularly promising, as well as some pivotal generation and characterisation techniques. In addition, we share our vision of where we believe structured light's applications are moving towards., Comment: The following article has been submitted to Applied Physics Letters. After it is published, it will be found at https://publishing.aip.org/resources/librarians/products/journals/
- Published
- 2024
40. Microscopic description of spontaneous fission based on a Gogny energy density functional including tensor contributions
- Author
-
Rodríguez-Guzmán, R., Robledo, L. M., and Bernard, R. N.
- Subjects
Nuclear Theory - Abstract
This paper extends previous studies on the impact of tensor forces in fission dynamics of neutron-deficient Thorium isotopes to other isotopic chains of heavy actinides and low-mass super-heavy nuclei. Calculations are carried out within a mean-field framework based on the Gogny-D1S parametrization supplemented with the D1ST2a perturbative tensor term as driving force. Fission barrier heights and spontaneous fission half-lives are used as benchmarks to analyze the impact of the tensor term. A significant reduction of fission barrier heights and half-lives is associated to the tensor component of the force., Comment: 11 pages, 5 figures
- Published
- 2024
- Full Text
- View/download PDF
41. The GALAH Survey: Stellar parameters and abundances for 800,000 Gaia RVS spectra using GALAH DR4 and The Cannon
- Author
-
Das, Pradosh Barun, Zucker, Daniel B., De Silva, Gayandhi M., Borsato, Nicholas W., Mura-Guzmán, Aldo, Buder, Sven, Ness, Melissa, Nordlander, Thomas, Casey, Andrew R., Martell, Sarah L., Bland-Hawthorn, Joss, de Grijs, Richard, Freeman, Ken C., Kos, Janez, Stello, Dennis, Lewis, Geraint F., Hayden, Michael R., and Sharma, Sanjib
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
Analysing stellar parameters and abundances from nearly one million Gaia DR3 Radial Velocity Spectrometer (RVS) spectra poses challenges due to the limited spectral coverage (restricted to the infrared Ca II triplet) and variable signal-to-noise ratios of the data. To address this, we use The Cannon, a data-driven method, to transfer stellar parameters and abundances from the GALAH Data Release 4 (DR4; R ~ 28,000) catalogue to the lower resolution Gaia DR3 RVS spectra (R ~ 11,500). Our model, trained on 14,484 common targets, predicts parameters such as Teff, log g, and [Fe/H], along with several other elements across approximately 800,000 Gaia RVS spectra. We utilise stars from open and globular clusters present in the Gaia RVS catalogue to validate our predicted mean [Fe/H] with high precision (~0.02-0.10 dex). Additionally, we recover the bimodal distribution of [Ti/Fe] versus [Fe/H], reflecting the high and low alpha-components of Milky Way disk stars, demonstrating The Cannon's capability for accurate stellar abundance determination from medium-resolution Gaia RVS spectra. The methodologies and resultant catalogue presented in this work highlight the remarkable potential of the RVS dataset, which by the end of the Gaia mission will comprise spectra of over 200 million stars., Comment: Submitted to MNRAS, 16 pages, 15 figures
- Published
- 2024
42. The gold partition conjecture and the Lexicographic sum of posets
- Author
-
Dolores-Cuenca, Eric R., Guzmán-Sáenz, Aldo, and Kim, Sangil
- Subjects
Mathematics - Combinatorics ,06A07 - Abstract
If a finite poset $Q$ satisfies the Gold Partition Conjecture, and $P$ is a finite poset, then for any $i$ in $P$ the lexicographic sum of $P$ with $Q$ on the point $i$, satisfies the Gold Partition Conjecture., Comment: 8 pages
- Published
- 2024
43. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
44. STROBE-X High Energy Modular Array (HEMA)
- Author
-
Hutcheson, Anthony L., Feroci, Marco, Argan, Andrea, Antonelli, Matias, Barbera, Marco, Bayer, Jorg, Bellutti, Pierluigi, Bertuccio, Giuseppe, Bonvicini, Valter, Cadoux, Franck, Campana, Riccardo, Vignali, Matteo Centis, Ceraudo, Francesco, Christophersen, Marc, Cirrincione, Daniela, D'Anca, Fabio, De Angelis, Nicolas, De Rosa, Alessandra, Della Casa, Giovanni, Del Monte, Ettore, Dilillo, Giuseppe, Evangelista, Yuri, Favre, Yannick, Ficorella, Francesco, Fiorini, Mauro, Ford, Jeremy J., Grassi, Marco, Grove, J. Eric, Guzman, Alejandro, Heddermann, Paul, Kole, Merlin R., Cicero, Ugo Lo, Lombardi, Giovanni, Malcovati, Piero, Michalska, Malgorzata, Meuris, Aline, Minervini, Gabriele, Nowosielski, Witold, Nuti, Alessio, Pacciani, Luigi, Pepponi, Giancarlo, Persyn, Steven C., Picciotto, Antonino, Pliego, Samuel, Rachevski, Alexander, Rashevskaya, Irina, Ray, Paul S., Samusenko, Alina, Santangelo, Andrea, Schanne, Stephane, Schwendeman, Carl L., Sleator, Clio, Smith, Jacob R., Sveda, Libor, Svoboda, Jiri, Tenzer, Christoph, Todaro, Michela, Trois, Alessio, Vacchi, Andrea, Xiong, Hao, Wang, Xianqi, Wu, Xin, Wulf, Eric A., Zampa, Gianluigi, Zampa, Nicola, Zdziarski, Andrzej, and Zorzi, Nicola
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The High Energy Modular Array (HEMA) is one of three instruments that compose the STROBE-X mission concept. The HEMA is a large-area, high-throughput non-imaging pointed instrument based on the Large Area Detector developed as part of the LOFT mission concept. It is designed for spectral timing measurements of a broad range of sources and provides a transformative increase in sensitivity to X-rays in the energy range of 2--30 keV compared to previous instruments, with an effective area of 3.4 m$^{2}$ at 8.5 keV and an energy resolution of better than 300 eV at 6 keV in its nominal field of regard., Comment: 16 pages, 10 figures
- Published
- 2024
- Full Text
- View/download PDF
45. Crossing Margins: Intersectional Users' Ethical Concerns about Software
- Author
-
Olson, Lauren, Humbert, Tom P., Fischer, Ricarda Anna-Lena, Westerveld, Bob, Kunneman, Florian, and Guzmán, Emitzá
- Subjects
Computer Science - Software Engineering ,Computer Science - Human-Computer Interaction - Abstract
Many modern software applications present numerous ethical concerns due to conflicts between users' values and companies' priorities. Intersectional communities, those with multiple marginalized identities, are disproportionately affected by these ethical issues, leading to legal, financial, and reputational issues for software companies, as well as real-world harm for intersectional users. Historically, the voices of intersectional communities have been systematically marginalized and excluded from contributing their unique perspectives to software design, perpetuating software-related ethical concerns. This work aims to fill the gap in research on intersectional users' software-related perspectives and provide software practitioners with a starting point to address their ethical concerns. We aggregated and analyzed the intersectional users' ethical concerns over time and developed a prioritization method to identify critical concerns. To achieve this, we collected posts from over 700 intersectional subreddits discussing software applications, utilized deep learning to identify ethical concerns in these posts, and employed state-of-the-art techniques to analyze their content in relation to time and priority. Our findings revealed that intersectional communities report \textit{critical} complaints related to cyberbullying, inappropriate content, and discrimination, highlighting significant flaws in modern software, particularly for intersectional users. Based on these findings, we discuss how to better address the ethical concerns of intersectional users in software development.
- Published
- 2024
46. The ground calibration of the HERMES-Pathfinder payload flight models
- Author
-
Dilillo, G., Marchesini, E. J., Baroni, G., Della Casa, G., Campana., R., Evangelista, Y., Guzmán, A., Hedderman, P., Bellutti, P., Bertuccio, G., Ceraudo, F., Citossi, M., Cirrincione, D., Dedolli, I., Demenev, E., Feroci, M., Ficorella, F., Fiorini, M., Gandola, M., Grassi, M., La Rosa, G., Lombardi, G., Malcovati, P., Mele, F., Nogara, P., Nuti, A., Perri, M., Pliego-Caballero, S., Pirrotta, S., Puccetti, S., Rashevskaya, I., Russo, F., Sottile, G., Tenzer, C., Trenti, M., Trevisan, S., Vacchi, A., Zampa, G., Zampa, N., and Fiore, F.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
HERMES-Pathfinder is a space-borne mission based on a constellation of six nano-satellites flying in a low-Earth orbit. The 3U CubeSats, to be launched in early 2025, host miniaturized instruments with a hybrid Silicon Drift Detector/scintillator photodetector system, sensitive to both X-rays and gamma-rays. A seventh payload unit is installed onboard SpIRIT, an Australian-Italian nano-satellite developed by a consortium led by the University of Melbourne and launched in December 2023. The project aims at demonstrating the feasibility of Gamma-Ray Burst detection and localization using miniaturized instruments onboard nano-satellites. The HERMES flight model payloads were exposed to multiple well-known radioactive sources for spectroscopic calibration under controlled laboratory conditions. The analysis of the calibration data allows both to determine the detector parameters, necessary to map instrumental units to accurate energy measurements, and to assess the performance of the instruments. We report on these efforts and quantify features such as spectroscopic resolution and energy thresholds, at different temperatures and for all payloads of the constellation. Finally we review the performance of the HERMES payload as a photon counter, and discuss the strengths and the limitations of the architecture.
- Published
- 2024
47. Reductions of Crystalline Representations for Small Weights
- Author
-
Guzman, Anthony
- Subjects
Mathematics - Number Theory - Abstract
We compute explicit reductions of crystalline representations of the absolute Galois group $\text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_{p^f})$ with labeled Hodge-Tate weights in the range $p+2\le k_{0}\le 2p-4$ and $2\le k_i\le p-3$ for $1\le i\le f-1$.
- Published
- 2024
48. Reductions of Some Crystalline Representations in the Unramified Setting
- Author
-
Guzman, Anthony
- Subjects
Mathematics - Number Theory - Abstract
We determine semisimple reductions of irreducible, 2-dimensional crystalline representations of the absolute Galois group $\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^f})$. To this end, we provide explicit representatives for the isomorphism classes of the associated weakly admissible filtered $\varphi$-modules by concretely describing the strongly divisible lattices which characterize the structure of the aforementioned modules. Using these representatives, we construct Kisin modules canonically associated to Galois stable lattice representations inside our crystalline representations. This allows us to compute the reduction of such crystalline representations for arbitrary labeled Hodge-Tate weights so long as the $p$-adic valuations of certain parameters are sufficiently large. Hence, we provide a Berger-Li-Zhu type bound in the unramified setting.
- Published
- 2024
49. Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity
- Author
-
Nguyen, Quan, Mehta, Nishant A., and Guzmán, Cristóbal
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Mathematics - Optimization and Control - Abstract
The minimax sample complexity of group distributionally robust optimization (GDRO) has been determined up to a $\log(K)$ factor, for $K$ the number of groups. In this work, we venture beyond the minimax perspective via a novel notion of sparsity that we dub $(\lambda, \beta)$-sparsity. In short, this condition means that at any parameter $\theta$, there is a set of at most $\beta$ groups whose risks at $\theta$ all are at least $\lambda$ larger than the risks of the other groups. To find an $\epsilon$-optimal $\theta$, we show via a novel algorithm and analysis that the $\epsilon$-dependent term in the sample complexity can swap a linear dependence on $K$ for a linear dependence on the potentially much smaller $\beta$. This improvement leverages recent progress in sleeping bandits, showing a fundamental connection between the two-player zero-sum game optimization framework for GDRO and per-action regret bounds in sleeping bandits. The aforementioned result assumes having a particular $\lambda$ as input. Perhaps surprisingly, we next show an adaptive algorithm which, up to log factors, gets sample complexity that adapts to the best $(\lambda, \beta)$-sparsity condition that holds. Finally, for a particular input $\lambda$, we also show how to get a dimension-free sample complexity result., Comment: 38 pages
- Published
- 2024
50. Toward a robust physical and chemical characterization of heterogeneous lines of sight: The case of the Horsehead nebula
- Author
-
Ségal, Léontine, Roueff, Antoine, Pety, Jérôme, Gerin, Maryvonne, Roueff, Evelyne, Goicoechea, R. Javier, Bešlic, Ivana, Coud'e, Simon, Einig, Lucas, Mazurek, Helena, Orkisz, H. Jan, Palud, Pierre, Santa-Maria, G. Miriam, Zakardjian, Antoine, Bardeau, S'ebastien, Bron, Emeric, Chainais, Pierre, Demyk, Karine, Magalhaes, Victor de Souza, Gratier, Pierre, Guzman, V. Viviana, Hughes, Annie, Languignon, David, Levrier, François, Bourlot, Jacques Le, Petit, Franck Le, Lis, C. Dariusz, Liszt, S. Harvey, Peretto, Nicolas, Sievers, Albrecht, and Thouvenin, Pierre-Antoine
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Dense cold molecular cores/filaments are surrounded by an envelope of translucent gas. Some of the low-J emission lines of CO and HCO$^+$ isotopologues are more sensitive to the conditions either in the translucent environment or in the dense cold one. We propose a cloud model composed of three homogeneous slabs of gas along each line of sight (LoS), representing an envelope and a shielded inner layer. IRAM-30m data from the ORION-B large program toward the Horsehead nebula are used to demonstrate the method's capability. We use the non-LTE radiative transfer code RADEX to model the line profiles from the kinetic temperature $T_{kin}$, the volume density $n_{H_2}$, kinematics and chemical properties of the different layers. We then use a maximum likelihood estimator to simultaneously fit the lines of the CO and HCO$^+$ isotopologues. We constrain column density ratios to limit the variance on the estimates. This simple heterogeneous model provides good fits of the fitted lines over a large part of the cloud. The decomposition of the intensity into three layers allows to discuss the distribution of the estimated physical/chemical properties along the LoS. About 80$\%$ the CO integrated intensity comes from the envelope, while $\sim55\%$ of that of the (1-0) and (2-1) lines of C$^{18}$O comes from the inner layer. The $N(^{13}CO)/N(C^{18}O)$ in the envelope increases with decreasing $A_v$, and reaches $25$ in the pillar outskirts. The envelope $T_{kin}$ varies from 25 to 40 K, that of the inner layer drops to $\sim 15$ K in the western dense core. The inner layer $n_{H_2}$ is $\sim 3\times10^4\,\text{cm}^{-3}$ toward the filament and it increases by a factor $10$ toward dense cores. The proposed method correctly retrieves the physical/chemical properties of the Horsehead nebula and offers promising prospects for less supervised model fits of wider-field datasets.
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.