Narendra N. Das, P. de Rosnay, Yann Kerr, Peggy O'Neill, Ahmad Al Bitar, G. De Lannoy, Roberto Fernandez-Moran, Heather Lawrence, Thomas J. Jackson, Valery Mironov, Jeffrey P. Walker, Marie Parrens, Joaquín Muñoz-Sabater, Amen Al-Yaari, P. Richaume, Simone Bircher, Mike Schwank, Jean-Pierre Wigneron, Steven Delwart, Arnaud Mialon, Jennifer Grant, Paolo Ferrazzoli, Mehmet Kurum, Alain Royer, Interactions Sol Plante Atmosphère (UMR ISPA), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro), United States Department of Agriculture, NASA Goddard Space Flight Center (GSFC), Université Catholique de Louvain = Catholic University of Louvain (UCL), European Centre for Medium-Range Weather Forecasts (ECMWF), Monash University [Clayton], Università degli Studi di Roma Tor Vergata [Roma], Kirenski Institute, Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD [France-Ouest]), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Netherlands Space Office, Mississippi State University [Mississippi], Gamma Remote Sensing and WSL-Birmensdorf, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Centre d'Applications et de Recherches en TELédétection [Sherbrooke] (CARTEL), Département de géomatique appliquée [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS)-Université de Sherbrooke (UdeS), European Space Research Institute (ESRIN), European Space Agency (ESA), Interactions Sol Plante Atmosphère (ISPA), Université Catholique de Louvain, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH)-NASA, Centre d'Applications et de Recherches en TELédétection (CARTEL), Université de Sherbrooke [Sherbrooke], and ESA ESRIN
Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009. The SMAP sensor, based on a large mesh reflector 6 m in diameter providing a conically scanning antenna beam with a surface incidence angle of 40°, was launched in January of 2015. Over the last decade, an intense scientific activity has focused on the development of the SM retrieval algorithms for the two missions. This activity has relied on many field (mainly tower-based) and airborne experimental campaigns, and since 2010–2011, on the SMOS and Aquarius space-borne L-band observations. It has relied too on the use of numerical, physical and semi-empirical models to simulate the microwave brightness temperature of natural scenes for a variety of scenarios in terms of system configurations (polarization, incidence angle) and soil, vegetation and climate conditions. Key components of the inversion models have been evaluated and new parameterizations of the effects of the surface temperature, soil roughness, soil permittivity, and vegetation extinction and scattering have been developed. Among others, global maps of select radiative transfer parameters have been estimated very recently. Based on this intense activity, improvements of the SMOS and SMAP SM inversion algorithms have been proposed. Some of them have already been implemented, whereas others are currently being investigated. In this paper, we present a review of the significant progress which has been made over the last decade in this field of research with a focus on L-band, and a discussion on possible applications to the SMOS and SMAP soil moisture retrieval approaches.