1. Are generative models fair? A study of racial bias in dermatological image generation
- Author
-
López-Pérez, Miguel, Hauberg, Søren, and Feragen, Aasa
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Racial bias in medicine, such as in dermatology, presents significant ethical and clinical challenges. This is likely to happen because there is a significant underrepresentation of darker skin tones in training datasets for machine learning models. While efforts to address bias in dermatology have focused on improving dataset diversity and mitigating disparities in discriminative models, the impact of racial bias on generative models remains underexplored. Generative models, such as Variational Autoencoders (VAEs), are increasingly used in healthcare applications, yet their fairness across diverse skin tones is currently not well understood. In this study, we evaluate the fairness of generative models in clinical dermatology with respect to racial bias. For this purpose, we first train a VAE with a perceptual loss to generate and reconstruct high-quality skin images across different skin tones. We utilize the Fitzpatrick17k dataset to examine how racial bias influences the representation and performance of these models. Our findings indicate that VAE performance is, as expected, influenced by representation, i.e. increased skin tone representation comes with increased performance on the given skin tone. However, we also observe, even independently of representation, that the VAE performs better for lighter skin tones. Additionally, the uncertainty estimates produced by the VAE are ineffective in assessing the model's fairness. These results highlight the need for more representative dermatological datasets, but also a need for better understanding the sources of bias in such model, as well as improved uncertainty quantification mechanisms to detect and address racial bias in generative models for trustworthy healthcare technologies., Comment: Under review
- Published
- 2025