1. Effectors Enabling Adaptation to Mitochondrial Complex I Loss in Hürthle Cell Carcinoma.
- Author
-
Gopal RK, Vantaku VR, Panda A, Reimer B, Rath S, To TL, Fisch AS, Cetinbas M, Livneh M, Calcaterra MJ, Gigliotti BJ, Pierce KA, Clish CB, Dias-Santagata D, Sadow PM, Wirth LJ, Daniels GH, Sadreyev RI, Calvo SE, Parangi S, and Mootha VK
- Subjects
- Humans, Thyroid Gland metabolism, Lipid Peroxides metabolism, Fermentation, Oxyphil Cells metabolism, DNA, Mitochondrial genetics, DNA, Mitochondrial metabolism, Carcinoma, Hepatocellular metabolism, Liver Neoplasms metabolism
- Abstract
Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR-Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity., Significance: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR-Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749., (©2023 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2023
- Full Text
- View/download PDF