9 results on '"Out-of-plane magnetization"'
Search Results
2. Nonreciprocal magnons in a two-dimensional crystal with out-of-plane magnetization
- Author
-
Universidad de Alicante. Departamento de Física Aplicada, Costa, Marcio, Peres, Nuno M.R., Fernández-Rossier, Joaquín, Costa, António T., Universidad de Alicante. Departamento de Física Aplicada, Costa, Marcio, Peres, Nuno M.R., Fernández-Rossier, Joaquín, and Costa, António T.
- Abstract
Nonreciprocal spin waves have a chiral asymmetry so that their energy is different for two opposite wave vectors. They are found in atomically thin ferromagnetic overlayers with in-plane magnetization and are linked to the antisymmetric Dzyaloshinskii-Moriya surface exchange. We use an itinerant fermion theory based on first-principles calculations to predict that nonreciprocal magnons can occur in Fe3GeTe2, the first stand-alone metallic two-dimensional crystal with out-of-plane magnetization. We find that both the energy and lifetime of magnons are nonreciprocal, and we predict that acoustic magnons can have lifetimes up to hundreds of picoseconds, orders of magnitude larger than in other conducting magnets.
- Published
- 2020
3. Spin reorientation transition in Co/Au multilayers.
- Author
-
Quispe-Marcatoma, J., Tarazona, H., Pandey, B., de Sousa, M.A., Carvalho, M., Landauro, C.V., Pelegrini, F., and Baggio Saitovitch, E.
- Subjects
- *
NUCLEAR spin , *COBALT , *MULTILAYERS , *MAGNETIZATION , *FERROMAGNETIC resonance , *METALLIC thin films - Abstract
We report a study about the spin reorientation transition (SRT) from perpendicular easy axis to in-plane easy axis of magnetization in Co/Au multilayers. A series of multilayers of Si/Au(100 Å)/{[Co( t Co )/Au(20 Å)] 20 }/Au(50 Å) family were studied, with Co layer thickness varying between 6 Å to 30 Å. The thickness of the Au layer was chosen large enough in order to minimize the interlayer exchange coupling between Co layers. In such thick Au-layer samples the magnetic properties are mainly the result of competition between interlayer magnetostatic coupling due to stray field, perpendicular magnetic anisotropy and shape anisotropy. The effective anisotropy constant K eff and the second order anisotropy K 2 were deduced from the fit of the resonant magnetic field obtained from out of plane dependence Ferromagnetic Resonance (FMR) experiments. To study the SRT, we have plotted the phase diagram between K eff and K 2 . The results show that SRT occurs through the metastable region with K 2 ≤ −½ K eff , ( K eff > 0). It is interesting to note that FMR shows the coexistence of two modes with different anisotropy for small Co thickness, while for thick Co layers the modes have the same anisotropy. Moreover, in thick Co layer samples, volume and surface spin wave resonance (SWR) modes were also excited by the microwave field, around the perpendicular FMR geometry, giving a clear evidence of a magnetic coupling between the Co layers. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
4. Non-reciprocal magnons in a two dimensional crystal with off-plane magnetization
- Author
-
Nuno M. R. Peres, Marcio Costa, Joaquín Fernández-Rossier, Antonio Costa, Universidad de Alicante. Departamento de Física Aplicada, Grupo de Nanofísica, and Universidade do Minho
- Subjects
Física de la Materia Condensada ,Ciências Naturais::Ciências Físicas ,Two-dimensional crystal ,Ciências Físicas [Ciências Naturais] ,Physics::Optics ,FOS: Physical sciences ,Library science ,02 engineering and technology ,01 natural sciences ,Out of plane ,Condensed Matter - Strongly Correlated Electrons ,Technical support ,Political science ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,European commission ,010306 general physics ,Computer resources ,Science & Technology ,Condensed Matter - Mesoscale and Nanoscale Physics ,Strongly Correlated Electrons (cond-mat.str-el) ,021001 nanoscience & nanotechnology ,Two dimensional crystal ,Nonreciprocal magnons ,Out-of-plane magnetization ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology - Abstract
Nonreciprocal spin waves have a chiral asymmetry so that their energy is different for two opposite wave vectors. They are found in atomically thin ferromagnetic overlayers with in-plane magnetization and are linked to the antisymmetric Dzyaloshinskii-Moriya surface exchange. We use an itinerant fermion theory based on first-principles calculations to predict that nonreciprocal magnons can occur in Fe3GeTe2, the first stand-alone metallic two-dimensional crystal with out-of-plane magnetization. We find that both the energy and lifetime of magnons are nonreciprocal, and we predict that acoustic magnons can have lifetimes up to hundreds of picoseconds, orders of magnitude larger than in other conducting magnets., N.M.R.P. acknowledges support from the European Commission through the project Graphene-Driven Revolutions in ICT and Beyond (Ref. No. 881603 -Core 3), and the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2013, COMPETE2020, PORTUGAL2020, FEDER, and the Portuguese Foundation for Science and Technology (FCT) through Projects No. PTDC/FISNAN/3668/2013 and No. POCI-01-0145-FEDER-028114. J.F.-R. acknowledges financial support from FCT for Project No. UTAP-EXPL/NTec/0046/2017, as well as Generalitat Valenciana funding Prometeo2017/139 and MINECO-Spain (Grant No. MAT2016-78625-C2). A.T.C. acknowledges the use of computer resources at MareNostrum and technical support provided by the Barcelona Supercomputing Center (RES-FI-2019-2-0034, RES-FI-2019-3-0019).
- Published
- 2020
5. On the conductive properties of MgO films grown on ultrathin hexagonal close-packed Co(0001) layer.
- Author
-
Gladczuk, L. and Aleszkiewicz, M.
- Subjects
- *
MAGNESIUM oxide , *ELECTRIC conductivity , *CRYSTAL growth , *THIN films , *COBALT compounds , *SCANNING tunneling microscopy , *SPINTRONICS - Abstract
Abstract: Here we present a scanning tunneling microscopy study of electrical conductivity of (110)-oriented MgO ultrathin films grown on hexagonal close-packed Co(0001) surface by molecular beam epitaxy, being a good candidate for tunneling barrier for future-generation spintronic devices. Three-dimensional growth of the tunneling barrier, expected for compressive strains emerging at the Co/MgO interface, is demonstrated by reflection high-energy electron diffraction and atomic force microscopy. The 5eV height of the full barrier of MgO is reached at a layer thickness of 4nm. Thinner MgO layers exhibit randomly distributed spots of the high conductance on the tunneling current map. The current–voltage curves indicate the existence of vacancies in MgO crystal lattice, lowering the resistivity of the tunneling barrier. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
6. Current-induced spin polarization in a spin-polarized two-dimensional electron gas with spin–orbit coupling
- Author
-
Wang, C.M., Pang, M.Q., Liu, S.Y., and Lei, X.L.
- Abstract
Abstract: The current-induced spin polarization (CISP) is investigated in a combined Rashba–Dresselhaus spin–orbit-coupled two-dimensional electron gas, subjected to a homogeneous out-of-plane magnetization. It is found that, in addition to the usual collision-related in-plane parts of CISP, there are two impurity-density-free contributions, arising from intrinsic and disorder-mediated mechanisms. The intrinsic parts of spin polarization are related to the Berry curvature, analogous with the anomalous and spin Hall effects. For short-range collision, the disorder-mediated spin polarizations completely cancel the intrinsic ones and the total in-plane components of CISP equal those for systems without magnetization. However, for remote disorders, this cancellation does not occur and the total in-plane components of CISP strongly depend on the spin–orbit interaction coefficients and magnetization for both pure Rashba and combined Rashba–Dresselhaus models. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
7. Magnetic nanostructures for local spin control in semiconductors
- Author
-
Seifert, F., Buckting, G., Halm, S., Kümmell, T., Bacher, G., Schuster, E., and Keune, W.
- Subjects
- *
NANOSTRUCTURES , *ELECTRIC conductivity , *ELECTRON beams , *SOLID state electronics - Abstract
Abstract: We present two approaches to achieve a pronounced remanent out-of-plane magnetization in ferromagnetic nanostructures: Ni nanomagnets with high aspect ratios and Fe/Tb multilayer structures with strong interface anisotropy were defined by electron beam lithography and fabricated by electrochemical deposition and UHV evaporation, respectively. Both technologies allow a local spin control in an underlying semiconductor via the magnetic fringe field. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
8. Retournement de l'aimantation dans des jonctions tunnels magnétiques par effet de transfert de spin
- Author
-
Lavanant, Marion, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Stéphane Mangin, and Sébastien Petit-Watelot
- Subjects
Optimization ,[PHYS]Physics [physics] ,Magnetic tunnel junctions ,Effet tunnel ,Aimantation perpendiculaire au plan ,Aimantation ,Ultra-high vacuum chambers ,Magnetization switching ,Out-of-plane magnetization ,Jonctions tunnels magnétiques ,Spin electronics ,Transfert de spin - Abstract
Spin Transfer Torque - Magnetic Random Access Memories – STT-MRAM – are developed as a new type of memory which could replace DRAM or SRAM. In the case of STT- MRAM, each memory point is a nanopillar magnetic tunnel junction composed of two magnetic layers separated by an oxide barrier. The multilayer stack can be grown under ultra-high vacuum using Molecular Beam Epitaxy (MBE) or Physical Vapor Deposition (PVD). Those systems are developed by the company Vinci Technologies (sponsoring this PhD work). The tunnel magnetoresistance signal which depends on the relative orientation of the two magnetizations is used to read the information stored in the device. The writing of the information in the device is realized thanks to the spin transfer torque effect, which allows magnetization manipulation using a spin current. The thermal stability of the device is given by the energy barrier separating the two magnetization orientations (up and down in the case of a perpendicular device). For STT-MRAM to be a competitive technology, the critical voltage needed for magnetization switching (writing voltage) as well as the switching time have to be reduced while the thermal stability remains high enough to ensure the retention of information. During my thesis, in collaboration with Vinci-Technologies several tools to grow thin films have been optimized. With such equipment, we were able to grow thin films with well characterized perpendicular (out-of-plane) anisotropy. I have then focused my study on industrial STT-MRAM devices (from two companies: IBM and STT) with an out-of-plane magnetization direction so as to understand the mechanism of current induced magnetization switching. By doing so, I could identify the relevant parameters influencing the switching voltage value and propose solutions to lower it while preserving thermal stability. Through a probabilistic study of magnetization reversal, coupled with macrospin and micromagnetic modeling studies, I have evidenced different switching mechanisms depending on the initial magnetic configuration. Indeed both the stray field from one magnetic layer to the other and the shape of the nanopillar have a large impact on magnetization manipulation; Les mémoires non-volatiles magnétiques à effet de couple de transfert de spin - STT-MRAM sont un nouveau type de mémoire pouvant remplacer les mémoires DRAM ou SRAM. Chaque point de mémoire STT-MRAM est une jonction tunnel magnétique sous forme d’un pilier de taille nanométrique, composée de deux couches magnétiques séparées par une barrière d'oxide. L'empilement multicouche doit être élaboré sous ultravide par épitaxie par faisceau moléculaire (M.B.E.) ou par pulvérisation cathodique (P.V.D.). Ces méthodes d’élaboration sont développées par la société Vinci Technologies (finançant ce travail de thèse par une bourse CIFRE). L’amplitude de la magnétorésistance tunnel, utilisée pour lire les informations stockées dans la mémoire, dépend de l'orientation relative des aimantations des deux couches magnétiques. Par ailleurs, l'écriture de l’information dans le dispositif est obtenue grâce à l'effet de couple de transfert de spin, qui permet la manipulation de l’aimantation en utilisant un courant polarisé. Enfin, la stabilité thermique du dispositif est donnée par la barrière en énergie séparant les deux orientations d'aimantation (vers le haut et vers le bas dans le cas d'un dispositif perpendiculaire). Pour que les STT-MRAM soient une technologie compétitive, la tension critique nécessaire au retournement de l’aimantation (tension d'écriture) ainsi que le temps de retournement doivent être réduits, tandis que la stabilité thermique doit rester suffisamment élevée pour assurer la conservation de l'information. Au cours de ma thèse, en collaboration avec Vinci Technologies, les équipements nécessaires à la croissance des couches minces composant les jonctions tunnels (M.B.E. et P.V.D.) ont été optimisées. Grâce à cela, nous avons pu obtenir des couches minces avec une anisotropie perpendiculaire (hors du plan) bien caractérisée. J'ai ensuite concentré mon étude sur les dispositifs STT-MRAM industriels (IBM et STT) présentant une aimantation perpendiculaire pour comprendre le mécanisme de retournement de l’aimantation induite par le courant. J'ai alors pu identifier les paramètres pertinents influençant la valeur de la tension de retournement et proposer des solutions pour l'abaisser tout en préservant la stabilité thermique. Grâce à une étude concernant la probabilité de retournement d'aimantation, comparée à une modélisation macrospin et micromagnétique, j'ai mis en évidence un mécanisme de retournement variable en fonction de la configuration magnétique initiale. En effet, le champ rayonné par une couche magnétique sur une autre et la forme de la jonction tunnel ont un impact important sur la manipulation de l'aimantation
- Published
- 2017
9. Spin transfer torque driven magnetization switching in magnetic tunnel junction
- Author
-
Lavanant, Marion, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Stéphane Mangin, Sébastien Petit-Watelot, and UL, Memoires
- Subjects
Optimization ,[PHYS]Physics [physics] ,Magnetic tunnel junctions ,Effet tunnel ,Aimantation perpendiculaire au plan ,Aimantation ,Ultra-high vacuum chambers ,Magnetization switching ,Out-of-plane magnetization ,Jonctions tunnels magnétiques ,Spin electronics ,Transfert de spin ,[PHYS] Physics [physics] - Abstract
Spin Transfer Torque - Magnetic Random Access Memories – STT-MRAM – are developed as a new type of memory which could replace DRAM or SRAM. In the case of STT- MRAM, each memory point is a nanopillar magnetic tunnel junction composed of two magnetic layers separated by an oxide barrier. The multilayer stack can be grown under ultra-high vacuum using Molecular Beam Epitaxy (MBE) or Physical Vapor Deposition (PVD). Those systems are developed by the company Vinci Technologies (sponsoring this PhD work). The tunnel magnetoresistance signal which depends on the relative orientation of the two magnetizations is used to read the information stored in the device. The writing of the information in the device is realized thanks to the spin transfer torque effect, which allows magnetization manipulation using a spin current. The thermal stability of the device is given by the energy barrier separating the two magnetization orientations (up and down in the case of a perpendicular device). For STT-MRAM to be a competitive technology, the critical voltage needed for magnetization switching (writing voltage) as well as the switching time have to be reduced while the thermal stability remains high enough to ensure the retention of information. During my thesis, in collaboration with Vinci-Technologies several tools to grow thin films have been optimized. With such equipment, we were able to grow thin films with well characterized perpendicular (out-of-plane) anisotropy. I have then focused my study on industrial STT-MRAM devices (from two companies: IBM and STT) with an out-of-plane magnetization direction so as to understand the mechanism of current induced magnetization switching. By doing so, I could identify the relevant parameters influencing the switching voltage value and propose solutions to lower it while preserving thermal stability. Through a probabilistic study of magnetization reversal, coupled with macrospin and micromagnetic modeling studies, I have evidenced different switching mechanisms depending on the initial magnetic configuration. Indeed both the stray field from one magnetic layer to the other and the shape of the nanopillar have a large impact on magnetization manipulation, Les mémoires non-volatiles magnétiques à effet de couple de transfert de spin - STT-MRAM sont un nouveau type de mémoire pouvant remplacer les mémoires DRAM ou SRAM. Chaque point de mémoire STT-MRAM est une jonction tunnel magnétique sous forme d’un pilier de taille nanométrique, composée de deux couches magnétiques séparées par une barrière d'oxide. L'empilement multicouche doit être élaboré sous ultravide par épitaxie par faisceau moléculaire (M.B.E.) ou par pulvérisation cathodique (P.V.D.). Ces méthodes d’élaboration sont développées par la société Vinci Technologies (finançant ce travail de thèse par une bourse CIFRE). L’amplitude de la magnétorésistance tunnel, utilisée pour lire les informations stockées dans la mémoire, dépend de l'orientation relative des aimantations des deux couches magnétiques. Par ailleurs, l'écriture de l’information dans le dispositif est obtenue grâce à l'effet de couple de transfert de spin, qui permet la manipulation de l’aimantation en utilisant un courant polarisé. Enfin, la stabilité thermique du dispositif est donnée par la barrière en énergie séparant les deux orientations d'aimantation (vers le haut et vers le bas dans le cas d'un dispositif perpendiculaire). Pour que les STT-MRAM soient une technologie compétitive, la tension critique nécessaire au retournement de l’aimantation (tension d'écriture) ainsi que le temps de retournement doivent être réduits, tandis que la stabilité thermique doit rester suffisamment élevée pour assurer la conservation de l'information. Au cours de ma thèse, en collaboration avec Vinci Technologies, les équipements nécessaires à la croissance des couches minces composant les jonctions tunnels (M.B.E. et P.V.D.) ont été optimisées. Grâce à cela, nous avons pu obtenir des couches minces avec une anisotropie perpendiculaire (hors du plan) bien caractérisée. J'ai ensuite concentré mon étude sur les dispositifs STT-MRAM industriels (IBM et STT) présentant une aimantation perpendiculaire pour comprendre le mécanisme de retournement de l’aimantation induite par le courant. J'ai alors pu identifier les paramètres pertinents influençant la valeur de la tension de retournement et proposer des solutions pour l'abaisser tout en préservant la stabilité thermique. Grâce à une étude concernant la probabilité de retournement d'aimantation, comparée à une modélisation macrospin et micromagnétique, j'ai mis en évidence un mécanisme de retournement variable en fonction de la configuration magnétique initiale. En effet, le champ rayonné par une couche magnétique sur une autre et la forme de la jonction tunnel ont un impact important sur la manipulation de l'aimantation
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.