1. Alirocumab boosts antioxidant status and halts inflammation in rat model of sepsis-induced nephrotoxicity via modulation of Nrf2/HO-1, PCSK9/HMGB1/NF-ᴋB/NLRP3 and Fractalkine/CX3CR1 hubs.
- Author
-
Hassan NF, El-Ansary MR, Selim HMRM, Ousman MS, Khattab MS, El-Ansary MRM, Gad ES, Moursi SMM, Gohar A, and Gowifel AMH
- Subjects
- Animals, Male, Rats, Inflammation drug therapy, Inflammation metabolism, Inflammation pathology, Disease Models, Animal, Lipopolysaccharides, PCSK9 Inhibitors, Kidney drug effects, Kidney pathology, Kidney metabolism, Proprotein Convertase 9 metabolism, Proprotein Convertase 9 genetics, Oxidative Stress drug effects, Anti-Inflammatory Agents pharmacology, Sepsis complications, Sepsis drug therapy, Sepsis metabolism, HMGB1 Protein metabolism, Chemokine CX3CL1 metabolism, Rats, Wistar, Acute Kidney Injury metabolism, Acute Kidney Injury drug therapy, Acute Kidney Injury chemically induced, Acute Kidney Injury pathology, NLR Family, Pyrin Domain-Containing 3 Protein metabolism, Heme Oxygenase (Decyclizing) metabolism, Antibodies, Monoclonal, Humanized pharmacology, NF-kappa B metabolism, NF-E2-Related Factor 2 metabolism, Antioxidants pharmacology, CX3C Chemokine Receptor 1 metabolism, Signal Transduction drug effects
- Abstract
Acute kidney injury (AKI) is a devastating consequence of sepsis, accompanied by high mortality rates. It was suggested that inflammatory pathways are closely linked to the pathogenesis of lipopolysaccharide (LPS)-induced AKI. Inflammatory signaling, including PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-κB, NLRP3/caspase-1 and Fractalkine/CX3CR1 are considered major forerunners in this link. Alirocumab, PCSK9 inhibitor, with remarkable anti-inflammatory features. Accordingly, this study aimed to elucidate the antibacterial effect of alirocumab against E. coli in vitro. Additionally, evaluation of the potential nephroprotective effects of alirocumab against LPS-induced AKI in rats, highlighting the potential underlying mechanisms involved in these beneficial actions. Thirty-six adult male Wistar rats were assorted into three groups (n=12). Group I; was a normal control group, whereas sepsis-mediated AKI was induced in groups II and III through single-dose intraperitoneal injection of LPS on day 16. In group III, animals were given alirocumab. The results revealed that LPS-induced AKI was mitigated by alirocumab, evidenced by amelioration in renal function tests (creatinine, cystatin C, KIM-1, and NGAL); oxidative stress biomarkers (Nrf2, HO-1, TAC, and MDA); apoptotic markers and renal histopathological findings. Besides, alirocumab pronouncedly hindered LPS-mediated inflammatory response, confirmed by diminishing HMGB1, TNF-α, IL-1β, and caspase-1 contents; the gene expression of PCSK9, RAGE, NF-ᴋB and Fractalkine/CX3CR1, along with mRNA expression of TLR4, MYD88, and NLRP3. Regarding the antibacterial actions, results showed that alirocumab displayed potential anti-bacterial activity against pathogenic gram-negative E. coli. In conclusion, alirocumab elicited nephroprotective activities against LPS-induced AKI via modulation of Nrf2/HO-1, PCSK9, HMGB1/RAGE/TLR4/MYD88/NF-ᴋB/NLRP3/Caspase-1, Fractalkine/CX3R1 and apoptotic axes., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF