388 results on '"Otto-Bliesner, B"'
Search Results
2. Uncertain Pathways to a Future Safe Climate
- Author
-
Sherwood, S. C., primary, Hegerl, G., additional, Braconnot, P., additional, Friedlingstein, P., additional, Goelzer, H., additional, Harris, N. R. P., additional, Holland, E., additional, Kim, H., additional, Mitchell, M., additional, Naish, T., additional, Nobre, P., additional, Otto‐Bliesner, B. L., additional, Reed, K. A., additional, Renwick, J., additional, and van der Wel, N. P. M., additional
- Published
- 2024
- Full Text
- View/download PDF
3. Paleoclimate Constraints on the Spatiotemporal Character of Past and Future Droughts
- Author
-
Coats, S., Smerdon, J. E., Stevenson, S., Fasullo, J. T., Otto-Bliesner, B., and Ault, T. R.
- Published
- 2020
4. Pliocene and Eocene provide best analogs for near-future climates
- Author
-
Burke, K. D., Williams, J. W., Chandler, M. A., Haywood, A. M., Lunt, D. J., and Otto-Bliesner, B. L.
- Published
- 2018
5. Reconstruction of past Antarctic temperature using present seasonal δ18O-inversion layer temperature: Unified Slope Equations and Applications
- Author
-
Liu, Z., primary, He, C., additional, Yan, M., additional, Buizert, C., additional, Otto-Bliesner, B. L., additional, Lu, F., additional, and Zeng, C., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Volcanic Eruption Signatures in the Isotope Enabled Last Millennium Ensemble
- Author
-
Stevenson, S, Otto-Bliesner, B. L, Brady, E. C, Nusbaumer, J, Tabor, C, Tomas, R, Noone, D. C, and Liu, Z
- Subjects
Meteorology And Climatology - Abstract
Explosive volcanic eruptions are one of the largest natural climate perturbations, but few observational constraints exist on either the climate responses to eruptions or the properties (size, hemispheric aerosol distribution, etc.) of the eruptions themselves. Paleoclimate records are thus important sources of information on past eruptions, often through the measurement of oxygen isotopic ratios (𝛿18O) in natural archives. However, since many processes affect 𝛿18O, the dynamical interpretation of these records can be quite complex. Here we present results from new, isotope-enabled members of the Community Earth System Model Last Millennium Ensemble, documenting eruption-induced 𝛿18O variations throughout the climate system. Eruptions create significant perturbations in the 𝛿18O of precipitation and soil moisture in central/eastern North America, via excitation of the Atlantic Multidecadal Oscillation. Monsoon Asia and Australia also exhibit strong precipitation and soil 𝛿18O anomalies; in these cases, 𝛿18O may reflect changes to El Niño-Southern Oscillation phase following eruptions. Salinity and seawater 𝛿18O patterns demonstrate the importance of both local hydrologic shifts and the phasing of the El Niño-Southern Oscillation response, both along the equator and in the subtropics. In all cases, the responses are highly sensitive to eruption latitude, which points to the utility of isotopic records in constraining aerosol distribution patterns associated with past eruptions. This is most effective using precipitation 𝛿18O; all Southern eruptions and the majority (66%) of Northern eruptions can be correctly identified. This work thus serves as a starting point for new, quantitative uses of isotopic records for understanding volcanic impacts on climate.
- Published
- 2019
- Full Text
- View/download PDF
7. The Connected Isotopic Water Cycle in the Community Earth System Model Version 1
- Author
-
Brady, E, Stevenson, S, Bailey, D, Liu, Z, Noone, D, Nusbaumer, J, Otto‐Bliesner, B. L, Tabor, C, Tomas, R, Wong, T, Zhang, J, and Zhu, J
- Subjects
Meteorology And Climatology - Abstract
Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both largescale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between largescale ocean and atmospheric circulation and smallerscale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotopeenabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850-2005 period, iCESM1 correctly captures the latetwentiethcentury structure of δ(exp 18)O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ(exp 18)O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotopeenabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.
- Published
- 2019
- Full Text
- View/download PDF
8. Chinese cave records and the East Asia Summer Monsoon
- Author
-
Liu, Zhengyu, Wen, Xinyu, Brady, E.C., Otto-Bliesner, B., Yu, Ge, Lu, Huayu, Cheng, Hai, Wang, Yongjin, Zheng, Weipeng, Ding, Yihui, Edwards, R.L., Cheng, Jun, Liu, Wei, and Yang, Hao
- Published
- 2014
- Full Text
- View/download PDF
9. A Comparison of the CMIP6 midHolocene and lig127k Simulations in CESM2
- Author
-
Otto-Bliesner, B, Brady, E, Tomas, R, Albani, S, Bartlein, P, Mahowald, N, Shafer, S, Kluzek, E, Lawrence, P, Leguy, G, Rothstein, M, Sommers, A, Otto-Bliesner B. L., Brady E. C., Tomas R. A., Albani S., Bartlein P. J., Mahowald N. M., Shafer S. L., Kluzek E., Lawrence P. J., Leguy G., Rothstein M., Sommers A. N., Otto-Bliesner, B, Brady, E, Tomas, R, Albani, S, Bartlein, P, Mahowald, N, Shafer, S, Kluzek, E, Lawrence, P, Leguy, G, Rothstein, M, Sommers, A, Otto-Bliesner B. L., Brady E. C., Tomas R. A., Albani S., Bartlein P. J., Mahowald N. M., Shafer S. L., Kluzek E., Lawrence P. J., Leguy G., Rothstein M., and Sommers A. N.
- Abstract
Results are presented and compared for the Community Earth System Model version 2 (CESM2) simulations of the middle Holocene (MH, 6 ka) and Last Interglacial (LIG, 127 ka). These simulations are designated as Tier 1 experiments (midHolocene and lig127k) for the Coupled Model Intercomparison Project phase 6 (CMIP6) and the Paleoclimate Modeling Intercomparison Project phase 4 (PMIP4). They use the low-top, standard 1° version of CESM2 contributing to CMIP6 DECK, historical, and future projection simulations, and to other modeling intercomparison projects. The midHolocene and lig127k provide the opportunity to examine the responses in CESM2 to the orbitally induced changes in the seasonal and latitudinal distribution of insolation. The insolation anomalies result in summer warming over the Northern Hemisphere continents, reduced Arctic summer minimum sea ice, and increased areal extent of the North African monsoon. The Arctic remains warm throughout the year. These changes are greater in the lig127k than midHolocene simulation. Other notable changes are reduction of the Niño3.4 variability and Drake Passage transport and a small increase in the Atlantic Meridional Overturning Circulation from the piControl to midHolocene to lig127k simulation. Comparisons to paleo-data and to simulations from previous model versions are discussed. Possible reasons for mismatches with the paleo-observations are proposed, including missing processes in CESM2, simplifications in the CMIP6 protocols for these experiments, and dating and calibration uncertainties in the data reconstructions.
- Published
- 2020
10. Reconstruction of Past Antarctic Temperature Using Present Seasonal δ18O--Inversion Layer Temperature: Unified Slope Equations and Applications.
- Author
-
LIU, Z., HE, C., YAN, M., BUIZERT, C., OTTO-BLIESNER, B. L., LU, F., and ZENG, C.
- Subjects
TEMPERATURE inversions ,ICE cores ,TEMPERATURE ,SURFACE reconstruction ,SEASONS ,SURFACE temperature - Abstract
Reconstructing the history of polar temperature from ice core water isotope (δ
18 O) calibration has remained a challenge in paleoclimate research, because of our incomplete understanding of various temperature--δ18 O relationships. This paper resolves this classical problem in a new framework called the unified slope equations (USE), which illustrates the general relations among spatial and temporal δ18 O--surface temperature slopes. The USE is applied to the Antarctica temperature change during the last deglaciation in model simulations and observations. It is shown that the comparable Antarcticamean spatial slope with deglacial temporal slope in δ18 O--surface temperature reconstruction is caused, accidentally, by the compensation responses between the δ18 O--inversion layer temperature relation and the inversion layer temperature itself. Furthermore, in light of the USE, we propose that the present seasonal slope of δ18 O--inversion layer temperature is an optimal paleothermometer that is more accurate and robust than the spatial slope. This optimal slope suggests the possibility of reconstructing past Antarctic temperature changes using present and future instrumental observations. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
11. The amplifying influence of increased ocean stratification on a future year without a summer
- Author
-
Fasullo, J. T., Tomas, R., Stevenson, S., Otto-Bliesner, B., Brady, E., and Wahl, E.
- Published
- 2017
- Full Text
- View/download PDF
12. Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming
- Author
-
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., Carlson, A. E., Lynch-Stieglitz, J., Curry, W., Brook, E., Erickson, D., Jacob, R., Kutzbach, J., and Cheng, J.
- Published
- 2009
- Full Text
- View/download PDF
13. Termination 1 Millennial‐Scale Rainfall Events Over the Sunda Shelf
- Author
-
Buckingham, F. L., primary, Carolin, S. A., additional, Partin, J. W., additional, Adkins, J. F., additional, Cobb, K. M., additional, Day, C. C., additional, Ding, Q., additional, He, C., additional, Liu, Z., additional, Otto‐Bliesner, B., additional, Roberts, W. H. G., additional, Lejau, S., additional, and Malang, J., additional
- Published
- 2022
- Full Text
- View/download PDF
14. The contributions of PMIP to the IPCC assessment reports
- Author
-
Kageyama, Masa, Abe-Ouchi, A., Annan, J., Braconnot, P., Brierley, C., González-Rouco, J. Fidel, Hargreaves, J., Harrison, S.P., Joussaume, S., Lunt, D.J., Otto-Bliesner, B., Rojas Corradi, M., Fidel Gonzalez-Rouco, J, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation du climat (CLIM), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
International audience; PMIP contributed to the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports (ARs) by placing current climate change into a wider context, evaluating climate model performance in very different climatic states, and constraining climate sensitivity based on paleoclimates.
- Published
- 2021
- Full Text
- View/download PDF
15. A major advance of tropical Andean glaciers during the Antarctic cold reversal
- Author
-
Jomelli, V., Favier, V., Vuille, M., Braucher, R., Martin, L., Blard, P.-H., Colose, C., Brunstein, D., He, F., Khodri, M., Bourlès, D. L., Leanni, L., Rinterknecht, V., Grancher, D., Francou, B., Ceballos, J. L., Fonseca, H., Liu, Z., and Otto-Bliesner, B. L.
- Published
- 2014
- Full Text
- View/download PDF
16. EPICA Dome C record of glacial and interglacial intensities
- Author
-
Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd, S., Kageyama, M., Jouzel, J., Landais, A., Minster, B., Barnola, J.M., Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen, J., Mikolajewicz, U., and Otto-Bliesner, B.
- Published
- 2010
- Full Text
- View/download PDF
17. Coupled Climate Simulation of the Evolution of Global Monsoons in the Holocene
- Author
-
Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L., and Shields, C.
- Published
- 2003
18. Pliocene Model Intercomparison (PlioMIP) Phase 2: Scientific Objectives and Experimental Design
- Author
-
Haywood, A. M, Dowsett, H. J, Dolan, A. M, Rowley, D, Abe-Ouchi, A, Otto-Bliesner, B, Chandler, M. A, Hunter, S. J, Lunt, D. J, Pound, M, and Salzmann, U
- Subjects
Meteorology And Climatology - Abstract
The Pliocene Model Intercomparison Project (PlioMIP) is a co-ordinated international climate modelling initiative to study and understand climate and environments of the Late Pliocene, and their potential relevance in the context of future climate change. PlioMIP operates under the umbrella of the Palaeoclimate Modelling Intercomparison Project (PMIP), which examines multiple intervals in Earth history, the consistency of model predictions in simulating these intervals and their ability to reproduce climate signals preserved in geological climate archives. This paper provides a thorough model intercomparison project description, and documents the experimental design in a detailed way. Specifically, this paper describes the experimental design and boundary conditions that will be utilized for the experiments in Phase 2 of PlioMIP.
- Published
- 2015
- Full Text
- View/download PDF
19. Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism
- Author
-
Zhong, Y., Miller, G. H., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Schneider, D. P., and Geirsdottir, A.
- Published
- 2011
- Full Text
- View/download PDF
20. Evolution and forcing mechanisms of El Niño over the past 21,000 years
- Author
-
Liu, Zhengyu, Lu, Zhengyao, Wen, Xinyu, Otto-Bliesner, B. L., Timmermann, A., and Cobb, K. M.
- Published
- 2014
- Full Text
- View/download PDF
21. Evaluation of coupled ocean–atmosphere simulations of the mid-Holocene using palaeovegetation data from the northern hemisphere extratropics
- Author
-
Wohlfahrt, J., Harrison, S. P., Braconnot, P., Hewitt, C. D., Kitoh, A., Mikolajewicz, U., Otto-Bliesner, B. L., and Weber, S. L.
- Published
- 2008
- Full Text
- View/download PDF
22. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations
- Author
-
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J. -Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carre, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Richard Peltier, W., Otto-Bliesner, B., Morozova, P. A., Mckay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., Abe-Ouchi, A., Department of Geography, University College of London [London] (UCL), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Variabilité à long terme du climat de l'océan (VALCO), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)
- Subjects
PMIP4-CMIP6 ,purl.org/pe-repo/ocde/ford#1.05.00 [https] ,midHolocene simulations ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment - Abstract
The mid-Holocene (6,000 years ago) is a standard experiment for the evaluation of the simulated response of global climate models using paleoclimate reconstructions. The latest mid-Holocene simulations are a contribution by the Palaeoclimate Model Intercomparison Project (PMIP4) to the current phase of the Coupled Model Intercomparison Project (CMIP6). Here we provide an initial analysis and evaluation of the results of the experiment for the mid-Holocene. We show that state-of-the-art models produce climate changes that are broadly consistent with theory and observations, including increased summer warming of the northern hemisphere and associated shifts in tropical rainfall. Many features of the PMIP4-CMIP6 simulations were present in the previous generation (PMIP3-CMIP5) of simulations. The PMIP4-CMIP6 ensemble for the mid-Holocene has a global mean temperature change of -0.3 K, which is -0.2 K cooler that the PMIP3-CMIP5 simulations predominantly as a result of the prescription of realistic greenhouse gas concentrations in PMIP4-CMIP6. Neither this difference nor the improvement in model complexity and resolution seems to improve the realism of the simulations. Biases in the magnitude and the sign of regional responses identified in PMIP3-CMIP5, such as the amplification of the northern African monsoon, precipitation changes over Europe and simulated aridity in mid-Eurasia, are still present in the PMIP4-CMIP6 simulations. Despite these issues, PMIP4-CMIP6 and the mid-Holocene provide an opportunity both for quantitative evaluation and derivation of\ud emergent constraints on climate sensitivity and feedback strength.
- Published
- 2020
- Full Text
- View/download PDF
23. The Community Earth System Model Version 2 (CESM2)
- Author
-
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., Strand, W. G., Sub Dynamics Meteorology, and Marine and Atmospheric Research
- Subjects
Global and Planetary Change ,preindustrial and historical simulations ,global coupled Earth system modeling ,Community Earth System Model (CESM) ,Environmental Chemistry ,Earth and Planetary Sciences(all) ,coupled model development and evaluation - Abstract
An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low-top” (40 km, with limited chemistry) and “high-top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low-latitude precipitation and shortwave cloud forcing biases; better representation of the Madden-Julian Oscillation; better El Niño-Southern Oscillation-related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low- and high-top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.
- Published
- 2020
24. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations
- Author
-
Hill, D. J, Haywood, A. M, Lunt, D. J, Hunter, S. J, Bragg, F. J, Contoux, C, Stepanek, C, Sohl, L, Rosenbloom, N. A, Chan, W.-L, Kamae, Y, Zhang, Z, Abe-Ouchi, A, Chandler, M. A, Jost, A, Lohmann, G, Otto-Bliesner, B. L, Ramstein, G, and Ueda, H
- Subjects
Meteorology And Climatology - Abstract
The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.
- Published
- 2014
- Full Text
- View/download PDF
25. Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints
- Author
-
Masson-Delmotte, V., Kageyama, M., Braconnot, P., Charbit, S., Krinner, G., Ritz, C., Guilyardi, E., Jouzel, J., Abe-Ouchi, A., Crucifix, M., Gladstone, R. M., Hewitt, C. D., Kitoh, A., LeGrande, A. N., Marti, O., Merkel, U., Motoi, T., Ohgaito, R., Otto-Bliesner, B., Peltier, W. R., Ross, I., Valdes, P. J., Vettoretti, G., Weber, S. L., Wolk, F., and Yu, Y.
- Published
- 2006
- Full Text
- View/download PDF
26. The Community Earth System Model Version 2 (CESM2)
- Author
-
Sub Dynamics Meteorology, Marine and Atmospheric Research, Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., Strand, W. G., Sub Dynamics Meteorology, Marine and Atmospheric Research, Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.
- Published
- 2020
27. A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene
- Author
-
Zhao, Y., Braconnot, P., Marti, O., Harrison, S.P., Hewitt, C., Kitoh, A., Liu, Z., Mikolajewicz, U., Otto-Bliesner, B., and Weber, S.L.
- Published
- 2005
- Full Text
- View/download PDF
28. Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation
- Author
-
He, C., primary, Liu, Z., additional, Otto-Bliesner, B. L., additional, Brady, E.C., additional, Zhu, C., additional, Tomas, R., additional, Clark, P.U., additional, Zhu, J., additional, Jahn, A., additional, Gu, S., additional, Zhang, J., additional, Nusbaumer, J., additional, Noone, D., additional, Cheng, H., additional, Wang, Y., additional, Yan, M., additional, and Bao, Y., additional
- Published
- 2021
- Full Text
- View/download PDF
29. Global monsoons in the mid-Holocene and oceanic feedback
- Author
-
Liu, Z., Harrison, S. P., Kutzbach, J., and Otto-Bliesner, B.
- Published
- 2004
- Full Text
- View/download PDF
30. Mid-Holocene climates of the Americas: a dynamical response to changed seasonality
- Author
-
Harrison, S. P., Kutzbach, J. E., Liu, Z., Bartlein, P. J., Otto-Bliesner, B., Muhs, D., Prentice, I. C., and Thompson, R. S.
- Published
- 2003
- Full Text
- View/download PDF
31. A Simulation of the Last Glacial Maximum climate using the NCAR-CCSM
- Author
-
Shin, S.-I., Liu, Z., Otto-Bliesner, B., Brady, E., Kutzbach, J., and Harrison, S.
- Published
- 2003
- Full Text
- View/download PDF
32. Factors that affect the amplitude of El Nino in global coupled climate models
- Author
-
Meehl, G. A., Gent, P. R., Arblaster, J. M., Otto-Bliesner, B. L., Brady, E. C., and Craig, A.
- Published
- 2001
- Full Text
- View/download PDF
33. Last Glacial Maximum temperatures over the North Atlantic, Europe and western Siberia: a comparison between PMIP models, MARGO sea–surface temperatures and pollen-based reconstructions
- Author
-
Kageyama, M., Laîné, A., Abe-Ouchi, A., Braconnot, P., Cortijo, E., Crucifix, M., de Vernal, A., Guiot, J., Hewitt, C.D., Kitoh, A., Kucera, M., Marti, O., Ohgaito, R., Otto-Bliesner, B., Peltier, W.R., Rosell-Melé, A., Vettoretti, G., Weber, S.L., and Yu, Y.
- Published
- 2006
- Full Text
- View/download PDF
34. Mid-Pliocene Atlantic Meridional Overturning Circulation Not Unlike Modern
- Author
-
Zhang, Z.-S, Nisancioglu, K. H, Chandler, M. A, Haywood, A. M, Otto-Bliesner, B. L, Ramstein, G, Stepanek, C, Abe-Ouchi, A, Chan, W. -L, and Sohl, L. E
- Subjects
Meteorology And Climatology - Abstract
In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.
- Published
- 2013
- Full Text
- View/download PDF
35. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka
- Author
-
Morrill, Carrie, Legrande, Allegra Nicole, Renssen, H, Bakker, P, and Otto-Bliesner, B. L
- Subjects
Meteorology And Climatology - Abstract
We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.
- Published
- 2013
- Full Text
- View/download PDF
36. Large-Scale Features of Pliocene Climate: Results from the Pliocene Model Intercomparison Project
- Author
-
Haywood, A. M, Hill, D.J, Dolan, A. M, Otto-Bliesner, B. L, Bragg, F, Chan, W.-L, Chandler, M. A, Contoux, C, Dowsett, H. J, Jost, A, Kamae, Y, Lohmann, G, Lunt, D. J, Abe-Ouchi, A, Pickering, S. J, Ramstein, G, Rosenbloom, N. A, Salzmann, U, Sohl, L, Stepanek, C, Ueda, H, Yan, Q, and Zhang, Z
- Subjects
Meteorology And Climatology - Abstract
Climate and environments of the mid-Pliocene warm period (3.264 to 3.025 Ma) have been extensively studied.Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a coordinated multi-model and multi-mode data intercomparison. Whilst commonalities in model outputs for the Pliocene are clearly evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data model comparison highlights that models potentially underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Furthermore, sensitivity tests exploring the known unknowns in modelling Pliocene climate specifically relevant to the high latitudes are essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), support previous work suggesting that ESS is greater than Climate Sensitivity (CS), and suggest that the ratio of ESS to CS is between 1 and 2, with a "best" estimate of 1.5.
- Published
- 2013
- Full Text
- View/download PDF
37. Making sense of palaeoclimate sensitivity
- Author
-
Rohling, E. J., Sluijs, A., Dijkstra, H. A., Köhler, P., van de Wal, R. S. W., von der Heydt, A. S., Beerling, D. J., Berger, A., Bijl, P. K., Crucifix, M., DeConto, R., Drijfhout, S. S., Fedorov, A., Foster, G. L., Ganopolski, A., Hansen, J., Hönisch, B., Hooghiemstra, H., Huber, M., Huybers, P., Knutti, R., Lea, D. W., Lourens, L. J., Lunt, D., Masson-Demotte, V., Medina-Elizalde, M., Otto-Bliesner, B., Pagani, M., Pälike, H., Renssen, H., Royer, D. L., Siddall, M., Valdes, P., Zachos, J. C., and Zeebe, R. E.
- Published
- 2012
- Full Text
- View/download PDF
38. CO 2 Increase Experiments Using the CESM: Relationship to Climate Sensitivity and Comparison of CESM1 to CESM2
- Author
-
Bacmeister, J. T., primary, Hannay, C., additional, Medeiros, B., additional, Gettelman, A., additional, Neale, R., additional, Fredriksen, H. B., additional, Lipscomb, W. H., additional, Simpson, I., additional, Bailey, D. A., additional, Holland, M., additional, Lindsay, K., additional, and Otto‐Bliesner, B., additional
- Published
- 2020
- Full Text
- View/download PDF
39. The Community Earth System Model Version 2 (CESM2)
- Author
-
Danabasoglu, G., primary, Lamarque, J.‐F., additional, Bacmeister, J., additional, Bailey, D. A., additional, DuVivier, A. K. , additional, Edwards, J., additional, Emmons, L. K., additional, Fasullo, J., additional, Garcia, R., additional, Gettelman, A., additional, Hannay, C., additional, Holland, M. M., additional, Large, W. G., additional, Lauritzen, P. H., additional, Lawrence, D. M., additional, Lenaerts, J. T. M., additional, Lindsay, K., additional, Lipscomb, W. H., additional, Mills, M. J., additional, Neale, R., additional, Oleson, K. W., additional, Otto‐Bliesner, B., additional, Phillips, A. S., additional, Sacks, W., additional, Tilmes, S., additional, Kampenhout, L., additional, Vertenstein, M., additional, Bertini, A., additional, Dennis, J., additional, Deser, C., additional, Fischer, C., additional, Fox‐Kemper, B., additional, Kay, J. E., additional, Kinnison, D., additional, Kushner, P. J., additional, Larson, V. E., additional, Long, M. C., additional, Mickelson, S., additional, Moore, J. K., additional, Nienhouse, E., additional, Polvani, L., additional, Rasch, P. J., additional, and Strand, W. G., additional
- Published
- 2020
- Full Text
- View/download PDF
40. Pliocene Model Intercomparison Project (PlioMIP): Experimental Design and Boundary Conditions (Experiment 2)
- Author
-
Haywood, A. M, Dowsett, H. J, Robinson, M. M, Stoll, D. K, Dolan, A. M, Lunt, D. J, Otto-Bliesner, B, and Chandler, M. A
- Subjects
Meteorology And Climatology - Abstract
The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere only climate models. The second (Experiment 2) utilizes fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.
- Published
- 2011
- Full Text
- View/download PDF
41. Climate Forcing Reconstructions for Use in PMIP Simulations of the Last Millennium (v1.0)
- Author
-
Schmidt, Gavin A, Jungclaus, J.H, Steinhilber, F, Vieira, L. E. A, Ammann, C. M, Bard, E, Braconnot, P, Crowley, T. J, Delayque, G, Joos, F, Krivova, N. A, Muscheler, R, Otto-Bliesner, B. L, Pongratz, J, Shindell, D. T, and Solanki, S. K
- Subjects
Meteorology And Climatology - Abstract
Simulations of climate over the Last Millennium (850-1850 CE) have been incorporated into the third phase of the Paleoclimate Modelling Intercomparison Project (PMIP3). The drivers of climate over this period are chiefly orbital, solar, volcanic, changes in land use/land cover and some variation in greenhouse gas levels. While some of these effects can be easily defined, the reconstructions of solar, volcanic and land use-related forcing are more uncertain. We describe here the approach taken in defining the scenarios used in PMIP3, document the forcing reconstructions and discuss likely implications.
- Published
- 2011
- Full Text
- View/download PDF
42. Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials
- Author
-
Capron, Emilie, Rovere, Alessio, Austermann, Jacqueline, Axford, Y., Barlow, Natasha L.M., Carlson, Anders E., Vernal, Anne de, Dutton, Andrea, Kopp, Robert E., McManus, Jerry, Menviel, Laurie, Otto-Bliesner, B., Robinson, Alexandra N, Shakun, Jeremy, Tzedakis, P. C., Wolff, Eric, Capron, Emilie, Rovere, Alessio, Austermann, Jacqueline, Axford, Y., Barlow, Natasha L.M., Carlson, Anders E., Vernal, Anne de, Dutton, Andrea, Kopp, Robert E., McManus, Jerry, Menviel, Laurie, Otto-Bliesner, B., Robinson, Alexandra N, Shakun, Jeremy, Tzedakis, P. C., and Wolff, Eric
- Published
- 2019
43. Terrestrial vegetation and its effects on climate during the latest Cretaceous
- Author
-
Upchurch, G. R., primary, Otto-Bliesner, B. L., additional, and Scotese, C. R., additional
- Published
- 1999
- Full Text
- View/download PDF
44. What can Palaeoclimate Modelling do for you?
- Author
-
Haywood, A. M., primary, Valdes, P. J., additional, Aze, T., additional, Barlow, N., additional, Burke, A., additional, Dolan, A. M., additional, von der Heydt, A. S., additional, Hill, D. J., additional, Jamieson, S. S. R., additional, Otto-Bliesner, B. L., additional, Salzmann, U., additional, Saupe, E., additional, and Voss, J., additional
- Published
- 2019
- Full Text
- View/download PDF
45. The PMIP4 contribution to CMIP6 - Part 1: Overview and over-arching analysis plan
- Author
-
Kageyama, M, Braconnot, P, Harrison, S, Haywood, A, Jungclaus, J, Otto-Bliesner, B, Abe-Ouchi, A, Albani, S, Bartlein, P, Brierley, C, Crucifix, M, Dolan, A, Fernandez-Donado, L, Fischer, H, Hopcroft, P, Ivanovic, R, Lambert, F, Lunt, D, Mahowald, N, Richard Peltier, W, Phipps, S, Roche, D, Schmidt, G, Tarasov, L, Valdes, P, Zhang, Q, Zhou, T, Kageyama, Masa, Braconnot, Pascale, Harrison, Sandy P., Haywood, Alan M., Jungclaus, Johann H., Otto-Bliesner, Bette L., Abe-Ouchi, Ayako, Albani, Samuel, Bartlein, Patrick J., Brierley, Chris, Crucifix, Michel, Dolan, Aisling, Fernandez-Donado, Laura L., Fischer, Hubertus, Hopcroft, Peter O., Ivanovic, Ruza F., Lambert, Fabrice, Lunt, Daniel J., Mahowald, Natalie M., Richard Peltier, W., Phipps, Steven J., Roche, Didier M., Schmidt, Gavin A., Tarasov, Lev, Valdes, Paul J., Zhang, Qiong, Zhou, Tianjun, Kageyama, M, Braconnot, P, Harrison, S, Haywood, A, Jungclaus, J, Otto-Bliesner, B, Abe-Ouchi, A, Albani, S, Bartlein, P, Brierley, C, Crucifix, M, Dolan, A, Fernandez-Donado, L, Fischer, H, Hopcroft, P, Ivanovic, R, Lambert, F, Lunt, D, Mahowald, N, Richard Peltier, W, Phipps, S, Roche, D, Schmidt, G, Tarasov, L, Valdes, P, Zhang, Q, Zhou, T, Kageyama, Masa, Braconnot, Pascale, Harrison, Sandy P., Haywood, Alan M., Jungclaus, Johann H., Otto-Bliesner, Bette L., Abe-Ouchi, Ayako, Albani, Samuel, Bartlein, Patrick J., Brierley, Chris, Crucifix, Michel, Dolan, Aisling, Fernandez-Donado, Laura L., Fischer, Hubertus, Hopcroft, Peter O., Ivanovic, Ruza F., Lambert, Fabrice, Lunt, Daniel J., Mahowald, Natalie M., Richard Peltier, W., Phipps, Steven J., Roche, Didier M., Schmidt, Gavin A., Tarasov, Lev, Valdes, Paul J., Zhang, Qiong, and Zhou, Tianjun
- Abstract
This paper is the first of a series of four GMD papers on the PMIP4-CMIP6 experiments. Part 2 (Otto-Bliesner et al., 2017) gives details about the two PMIP4-CMIP6 interglacial experiments, Part 3 (Jungclaus et al., 2017) about the last millennium experiment, and Part 4 (Kageyama et al., 2017) about the Last Glacial Maximum experiment. The mid-Pliocene Warm Period experiment is part of the Pliocene Model Intercomparison Project (PlioMIP) - Phase 2, detailed in Haywood et al. (2016). The goal of the Paleoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to different climate forcings for documented climatic states very different from the present and historical climates. Through comparison with observations of the environmental impact of these climate changes, or with climate reconstructions based on physical, chemical, or biological records, PMIP also addresses the issue of how well state-of-the-art numerical models simulate climate change. Climate models are usually developed using the present and historical climates as references, but climate projections show that future climates will lie well outside these conditions. Palaeoclimates very different from these reference states therefore provide stringent tests for state-of-the-art models and a way to assess whether their sensitivity to forcings is compatible with palaeoclimatic evidence. Simulations of five different periods have been designed to address the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6): the millennium prior to the industrial epoch (CMIP6 name: past1000); the mid-Holocene, 6000 years ago (midHolocene); the Last Glacial Maximum, 21ĝ€000 years ago (lgm); the Last Interglacial, 127ĝ€000 years ago (lig127k); and the mid-Pliocene Warm Period, 3.2 million years ago (midPliocene-eoi400). These climatic periods are well documented by palaeoclimatic and palaeoenvironmental records
- Published
- 2018
46. Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives
- Author
-
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, McGee, William David, Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Goman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S. G., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., Sun, J., Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences, McGee, William David, Albani, S., Mahowald, N. M., Winckler, G., Anderson, R. F., Bradtmiller, L. I., Delmonte, B., François, R., Goman, M., Heavens, N. G., Hesse, P. P., Hovan, S. A., Kang, S. G., Kohfeld, K. E., Lu, H., Maggi, V., Mason, J. A., Mayewski, P. A., Miao, X., Otto-Bliesner, B. L., Perry, A. T., Pourmand, A., Roberts, H. M., Rosenbloom, N., Stevens, T., and Sun, J.
- Abstract
Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP (Dust Indicators and Records from Terrestrial and MArine Palaeoenvironments) paleodust data sets in the last 2 decades provided a benchmark for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust data set that builds on the positive experience of DIRTMAP and takes into account new scientific challenges by providing a concise and accessible data set of temporally resolved records of dust mass accumulation rates and particle grain size distributions. We consider data from ice cores, marine sediments, loess–paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows the investigation of the potential, uncertainties, and confidence level of dust mass accumulation rate reconstructions and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 45 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggests that minimum dust fluxes are likely observed during the early to mid-Holocene period (6000–8000 years ago), the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize data sets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate
- Published
- 2018
47. Grand Challenges for Biological and Environmental Research: A Long-Term Vision
- Author
-
Arkin, A., primary, Baliga, N., additional, Braam, J., additional, Church, G., additional, Collins, J, additional, Cottingham, R., additional, Ecker, J., additional, Gerstein, M., additional, Gilna, P., additional, Greenberg, J., additional, Handelsman, J., additional, Hubbard, S., additional, Joachimiak, A., additional, Liao, J., additional, Looger, L., additional, Meyerowitz, E., additional, Mjolness, E., additional, Petsko, G., additional, Sayler, G., additional, Simpson, M., additional, Stacey, G., additional, Sussman, M., additional, Tiedje, J., additional, Bader, D., additional, Cessi, P., additional, Collins, W., additional, Denning, S., additional, Dickinson, R., additional, Easterling, D., additional, Edmonds, J., additional, Feddema, J., additional, Field, C., additional, Fridlind, A., additional, Fung, I., additional, Held, I., additional, Jackson, R., additional, Janetos, A., additional, Large, W., additional, Leinen, M., additional, Leung, R., additional, Long, S., additional, Mace, G., additional, Masiello, C., additional, Meehl, G., additional, Ort, D., additional, Otto-Bliesner, B., additional, Penner, J., additional, Prather, M., additional, Randall, D., additional, Rasch, P., additional, Schneider, E., additional, Shugart, H., additional, Thornton, P., additional, Washington, W., additional, Wildung, R., additional, Wiscombe, W., additional, Zak, D., additional, Zhang, M., additional, Bielicki, J., additional, Buford, M., additional, Cleland, E., additional, Dale, V., additional, Duke, C., additional, Ehleringer, J., additional, Hecht, A., additional, Kammen, D., additional, Marland, G., additional, Pataki, D., additional, and Riley, M. Robertson, P., additional
- Published
- 2010
- Full Text
- View/download PDF
48. The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations
- Author
-
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.
- Subjects
lcsh:Geology ,lcsh:QE1-996.5 - Abstract
The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
- Published
- 2017
49. The PMIP4 contribution to CMIP6 – Part 3: the Last Millennium, Scientific Objective and Experimental Design for the PMIP4 past1000 simulations
- Author
-
Jungclaus, J., https://orcid.org/0000-0002-3849-4339, Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L., Egorova, T., Evans, M., González-Rouco, J., Goosse, H., Hurtt, G., Joos, F., Kaplan, J., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A., Lorenz, S., Luterbacher, J., Man, W., Meinshausen, M., Moberg, A., Nehrbass-Ahles, C., Otto-Bliesner, B., Phipps, S., Pongratz, J., https://orcid.org/0000-0003-0372-3960, Rozanov, E., Schmidt, G., Schmidt, H., https://orcid.org/0000-0001-7977-5041, Schmutz, W., Schurer, A., Shapiro, A., Sigl, M., Smerdon, J., Solanki, S., Timmreck, C., Toohey, M., Usoskin, I., Wagner, S., Wu, C., Yeo, K., Zanchettin, D., Zhang, Q., and Zorita, E.
- Abstract
The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
- Published
- 2017
- Full Text
- View/download PDF
50. The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM
- Author
-
Lunt, D. J., Huber, M., Baatsen, M. L. J., Caballero, R., DeConto, R., Donnadieu, Y., Evans, D., Feng, R., Foster, G., Gasson, E., von der Heydt, A. S., Hollis, C. J., Kirtland Turner, S., Korty, R. L., Kozdon, R., Krishnan, S., Ladant, J. -B., Langebroek, P., Lear, C. H., LeGrande, A. N., Littler, K., Markwick, P., Otto-Bliesner, B., Pearson, P., Poulsen, C., Salzmann, U., Shields, C., Snell, K., Starz, M., Super, J., Tabour, C., Tierney, J., Tourte, G. J. L., Upchurch, G. R., Wade, B., Wing, S. L., Winguth, A. M. E., Wright, N., Zachos, J. C., Zeebe, R., Sub Physical Oceanography, and Marine and Atmospheric Research
- Abstract
Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high (> 800 ppmv) atmospheric CO2 concentrations. Although a post-hoc intercomparison of Eocene (~50 million years ago, Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the latest Paleocene and the early Eocene. Together these form the first phase of DeepMIP – the deeptime model intercomparison project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design consists of three core paleo simulations and a set of optional sensitivity studies. The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, orbital configuration, solar constant, land surface parameters, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological datasets, which will be used to evaluate the simulations, will be developed.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.