1. Prestellar Cores in Turbulent Clouds II. Properties of Critical Cores
- Author
-
Moon, Sanghyuk and Ostriker, Eve C.
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics - Abstract
A fraction of the dense cores that form within a turbulent molecular cloud will eventually collapse, leading to star formation. Identifying the physical criteria for cores to become unstable, and analyzing critical core properties, thus constitutes a necessary step toward the complete theory of star formation. To this end, here we quantify the characteristics of an ensemble of ``critical cores'' that are on the verge of collapse. This critical epoch was identified in a companion paper, which followed the dynamical evolution of prestellar cores in numerical simulations of turbulent, self-gravitating clouds. We find that radial profiles of density and turbulent velocity dispersion constructed for individual critical cores are consistent with our new model for turbulent equilibrium spheres (TESs). While there exists a global linewidth--size relation for a cloud with given size and Mach number, the turbulent scaling relations constructed around each core exhibit significant variations, locally regulating the critical density for a core to become unstable. As a result, there is no single density threshold for collapse, but instead cores collapse at a wide range of densities determined by the local sonic scale, modulated by the local gravitational potential environment, with a distribution expected for TESs with a limited range of turbulent velocity dispersion. The critical cores found in our simulations are mostly transonic; we do not find either purely thermal or highly turbulent cores. We find that the core mass function (CMF) of critical cores peaks around the characteristic mass scale associated with the average properties of a turbulent cloud. We highlight the importance of constructing the CMF at the critical time instead of sink particle mass functions, and derive the resolution requirements to unambiguously identify the peak of the CMF., Comment: 24 pages, 11 figures, submitted to ApJ; updated to include cross-references to the accompanying paper
- Published
- 2024