201 results on '"Orts, Julien"'
Search Results
2. Methyl probes in proteins for determining ligand binding mode in weak protein–ligand complexes
- Author
-
Mohanty, Biswaranjan, Orts, Julien, Wang, Geqing, Nebl, Stefan, Alwan, Wesam S., Doak, Bradley C., Williams, Martin L., Heras, Begoña, Mobli, Mehdi, and Scanlon, Martin J.
- Published
- 2022
- Full Text
- View/download PDF
3. Targeting the main protease (Mpro, nsp5) by growth of fragment scaffolds exploiting structure-based methodologies
- Author
-
Altincekic, Nadide, Jores, Nathalie, Löhr, Frank, Richter, Christian, Ehrhardt, Claus, Blommers, Marcel J. J., Berg, Hannes, Öztürk, Sare, Gande, Santosh L., Linhard, Verena, Orts, Julien, Abi Saad, Marie Jose, Bütikofer, Matthias, Kaderli, Janina, Karlsson, B. Göran, Brath, Ulrika, Hedenström, Mattias, Gröbner, Gerhard, Sauer, Uwe H., Perrakis, Anastassis, Langer, Julian, Banci, Lucia, Cantini, Francesca, Fragai, Marco, Grifagni, Deborah, Barthel, Tatjana, Wollenhaupt, Jan, Weiss, Manfred S., Robertson, Angus, Bax, Adriaan, Sreeramulu, Sridhar, Schwalbe, Harald, Altincekic, Nadide, Jores, Nathalie, Löhr, Frank, Richter, Christian, Ehrhardt, Claus, Blommers, Marcel J. J., Berg, Hannes, Öztürk, Sare, Gande, Santosh L., Linhard, Verena, Orts, Julien, Abi Saad, Marie Jose, Bütikofer, Matthias, Kaderli, Janina, Karlsson, B. Göran, Brath, Ulrika, Hedenström, Mattias, Gröbner, Gerhard, Sauer, Uwe H., Perrakis, Anastassis, Langer, Julian, Banci, Lucia, Cantini, Francesca, Fragai, Marco, Grifagni, Deborah, Barthel, Tatjana, Wollenhaupt, Jan, Weiss, Manfred S., Robertson, Angus, Bax, Adriaan, Sreeramulu, Sridhar, and Schwalbe, Harald
- Abstract
The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.
- Published
- 2024
- Full Text
- View/download PDF
4. Comprehensive Fragment Screening of the SARS‐CoV‐2 Proteome Explores Novel Chemical Space for Drug Development
- Author
-
Berg, Hannes, Wirtz Martin, Maria A., Altincekic, Nadide, Alshamleh, Islam, Kaur Bains, Jasleen, Blechar, Julius, Ceylan, Betül, Jesus, Vanessa de, Dhamotharan, Karthikeyan, Fuks, Christin, Gande, Santosh L., Hargittay, Bruno, Hohmann, Katharina F., Hutchison, Marie T., Korn, Sophie Marianne, Krishnathas, Robin, Kutz, Felicitas, Linhard, Verena, Matzel, Tobias, Meiser, Nathalie, Niesteruk, Anna, Pyper, Dennis J., Schulte, Linda, Trucks, Sven, Azzaoui, Kamal, Blommers, Marcel J. J., Gadiya, Yojana, Karki, Reagon, Zaliani, Andrea, Gribbon, Philip, Silva Almeida, Marcius da, Dinis Anobom, Cristiane, Bula, Anna L., Bütikofer, Matthias, Putinhon Caruso, Ícaro, Caterina Felli, Isabella, Da Poian, Andrea T., Cardoso de Amorim, Gisele, Fourkiotis, Nikolaos K., Gallo, Angelo, Ghosh, Dhiman, Gomes‐Neto, Francisco, Gorbatyuk, Oksana, Hao, Bing, Kurauskas, Vilius, Lecoq, Lauriane, Li, Yunfeng, Cunha Mebus‐Antunes, Nathane, Mompeán, Miguel, Cristtina Neves‐Martins, Thais, Ninot‐Pedrosa, Martí, Pinheiro, Anderson S., Pontoriero, Letizia, Pustovalova, Yulia, Riek, Roland, Robertson, Angus J., Jose Abi Saad, Marie, Treviño, Miguel Á., Tsika, Aikaterini C., Almeida, Fabio C. L., Bax, Ad, Henzler‐Wildman, Katherine, Hoch, Jeffrey C., Jaudzems, Kristaps, Laurents, Douglas V., Orts, Julien, Pierattelli, Roberta, Spyroulias, Georgios A., Duchardt‐Ferner, Elke, Ferner, Jan, Fürtig, Boris, Hengesbach, Martin, Löhr, Frank, Qureshi, Nusrat, Richter, Christian, Saxena, Krishna, Schlundt, Andreas, Sreeramulu, Sridhar, Wacker, Anna, Weigand, Julia E., Wirmer‐Bartoschek, Julia, Wöhnert, Jens, Schwalbe, Harald, Berg, Hannes, Wirtz Martin, Maria A., Altincekic, Nadide, Alshamleh, Islam, Kaur Bains, Jasleen, Blechar, Julius, Ceylan, Betül, Jesus, Vanessa de, Dhamotharan, Karthikeyan, Fuks, Christin, Gande, Santosh L., Hargittay, Bruno, Hohmann, Katharina F., Hutchison, Marie T., Korn, Sophie Marianne, Krishnathas, Robin, Kutz, Felicitas, Linhard, Verena, Matzel, Tobias, Meiser, Nathalie, Niesteruk, Anna, Pyper, Dennis J., Schulte, Linda, Trucks, Sven, Azzaoui, Kamal, Blommers, Marcel J. J., Gadiya, Yojana, Karki, Reagon, Zaliani, Andrea, Gribbon, Philip, Silva Almeida, Marcius da, Dinis Anobom, Cristiane, Bula, Anna L., Bütikofer, Matthias, Putinhon Caruso, Ícaro, Caterina Felli, Isabella, Da Poian, Andrea T., Cardoso de Amorim, Gisele, Fourkiotis, Nikolaos K., Gallo, Angelo, Ghosh, Dhiman, Gomes‐Neto, Francisco, Gorbatyuk, Oksana, Hao, Bing, Kurauskas, Vilius, Lecoq, Lauriane, Li, Yunfeng, Cunha Mebus‐Antunes, Nathane, Mompeán, Miguel, Cristtina Neves‐Martins, Thais, Ninot‐Pedrosa, Martí, Pinheiro, Anderson S., Pontoriero, Letizia, Pustovalova, Yulia, Riek, Roland, Robertson, Angus J., Jose Abi Saad, Marie, Treviño, Miguel Á., Tsika, Aikaterini C., Almeida, Fabio C. L., Bax, Ad, Henzler‐Wildman, Katherine, Hoch, Jeffrey C., Jaudzems, Kristaps, Laurents, Douglas V., Orts, Julien, Pierattelli, Roberta, Spyroulias, Georgios A., Duchardt‐Ferner, Elke, Ferner, Jan, Fürtig, Boris, Hengesbach, Martin, Löhr, Frank, Qureshi, Nusrat, Richter, Christian, Saxena, Krishna, Schlundt, Andreas, Sreeramulu, Sridhar, Wacker, Anna, Weigand, Julia E., Wirmer‐Bartoschek, Julia, Wöhnert, Jens, and Schwalbe, Harald
- Abstract
SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome.
- Published
- 2024
5. Targeting the Main Protease (Mpro, nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies
- Author
-
Altincekic, Nadide, primary, Jores, Nathalie, additional, Löhr, Frank, additional, Richter, Christian, additional, Ehrhardt, Claus, additional, Blommers, Marcel J. J., additional, Berg, Hannes, additional, Öztürk, Sare, additional, Gande, Santosh L., additional, Linhard, Verena, additional, Orts, Julien, additional, Abi Saad, Marie Jose, additional, Bütikofer, Matthias, additional, Kaderli, Janina, additional, Karlsson, B. Göran, additional, Brath, Ulrika, additional, Hedenström, Mattias, additional, Gröbner, Gerhard, additional, Sauer, Uwe H., additional, Perrakis, Anastassis, additional, Langer, Julian, additional, Banci, Lucia, additional, Cantini, Francesca, additional, Fragai, Marco, additional, Grifagni, Deborah, additional, Barthel, Tatjana, additional, Wollenhaupt, Jan, additional, Weiss, Manfred S., additional, Robertson, Angus, additional, Bax, Adriaan, additional, Sreeramulu, Sridhar, additional, and Schwalbe, Harald, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Protein—ligand structure determination with the NMR molecular replacement tool, NMR2
- Author
-
Orts, Julien and Riek, Roland
- Published
- 2020
- Full Text
- View/download PDF
7. A Benchmark Study of Protein–Fragment Complex Structure Calculations with NMR2
- Author
-
Torres, Felix, primary, Stadler, Gabriela, additional, Kwiatkowski, Witek, additional, and Orts, Julien, additional
- Published
- 2023
- Full Text
- View/download PDF
8. Targeting the Main Protease (Mpro, nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies.
- Author
-
Altincekic, Nadide, Jores, Nathalie, Löhr, Frank, Richter, Christian, Ehrhardt, Claus, Blommers, Marcel J. J., Berg, Hannes, Öztürk, Sare, Gande, Santosh L., Linhard, Verena, Orts, Julien, Abi Saad, Marie Jose, Bütikofer, Matthias, Kaderli, Janina, Karlsson, B. Göran, Brath, Ulrika, Hedenström, Mattias, Gröbner, Gerhard, Sauer, Uwe H., and Perrakis, Anastassis
- Published
- 2024
- Full Text
- View/download PDF
9. Identification of Natural Products Inhibiting SARS-CoV-2 by Targeting Viral Proteases: A Combined in Silico and in Vitro Approach
- Author
-
Wasilewicz, Andreas, primary, Kirchweger, Benjamin, additional, Bojkova, Denisa, additional, Abi Saad, Marie Jose, additional, Langeder, Julia, additional, Bütikofer, Matthias, additional, Adelsberger, Sigrid, additional, Grienke, Ulrike, additional, Cinatl Jr., Jindrich, additional, Petermann, Olivier, additional, Scapozza, Leonardo, additional, Orts, Julien, additional, Kirchmair, Johannes, additional, Rabenau, Holger F., additional, and Rollinger, Judith M., additional
- Published
- 2023
- Full Text
- View/download PDF
10. The experimental accuracy of the uni-directional exact NOE
- Author
-
Strotz, Dean, Orts, Julien, Minges, Martina, and Vögeli, Beat
- Published
- 2015
- Full Text
- View/download PDF
11. The Konrat's Festschrift - Editorial
- Author
-
Coudevylle, Nicolas, primary, Orts, Julien, additional, and Kontaxis, Georg, additional
- Published
- 2022
- Full Text
- View/download PDF
12. Comprehensive Fragment Screening of the SARS‐CoV‐2 Proteome Explores Novel Chemical Space for Drug Development
- Author
-
Berg, Hannes, primary, Wirtz Martin, Maria A., additional, Altincekic, Nadide, additional, Alshamleh, Islam, additional, Kaur Bains, Jasleen, additional, Blechar, Julius, additional, Ceylan, Betül, additional, de Jesus, Vanessa, additional, Dhamotharan, Karthikeyan, additional, Fuks, Christin, additional, Gande, Santosh L., additional, Hargittay, Bruno, additional, Hohmann, Katharina F., additional, Hutchison, Marie T., additional, Marianne Korn, Sophie, additional, Krishnathas, Robin, additional, Kutz, Felicitas, additional, Linhard, Verena, additional, Matzel, Tobias, additional, Meiser, Nathalie, additional, Niesteruk, Anna, additional, Pyper, Dennis J., additional, Schulte, Linda, additional, Trucks, Sven, additional, Azzaoui, Kamal, additional, Blommers, Marcel J. J., additional, Gadiya, Yojana, additional, Karki, Reagon, additional, Zaliani, Andrea, additional, Gribbon, Philip, additional, da Silva Almeida, Marcius, additional, Dinis Anobom, Cristiane, additional, Bula, Anna L., additional, Bütikofer, Matthias, additional, Putinhon Caruso, Ícaro, additional, Caterina Felli, Isabella, additional, Da Poian, Andrea T., additional, Cardoso de Amorim, Gisele, additional, Fourkiotis, Nikolaos K., additional, Gallo, Angelo, additional, Ghosh, Dhiman, additional, Gomes‐Neto, Francisco, additional, Gorbatyuk, Oksana, additional, Hao, Bing, additional, Kurauskas, Vilius, additional, Lecoq, Lauriane, additional, Li, Yunfeng, additional, Cunha Mebus‐Antunes, Nathane, additional, Mompeán, Miguel, additional, Cristtina Neves‐Martins, Thais, additional, Ninot‐Pedrosa, Martí, additional, Pinheiro, Anderson S., additional, Pontoriero, Letizia, additional, Pustovalova, Yulia, additional, Riek, Roland, additional, Robertson, Angus J., additional, Jose Abi Saad, Marie, additional, Treviño, Miguel Á., additional, Tsika, Aikaterini C., additional, Almeida, Fabio C. L., additional, Bax, Ad, additional, Henzler‐Wildman, Katherine, additional, Hoch, Jeffrey C., additional, Jaudzems, Kristaps, additional, Laurents, Douglas V., additional, Orts, Julien, additional, Pierattelli, Roberta, additional, Spyroulias, Georgios A., additional, Duchardt‐Ferner, Elke, additional, Ferner, Jan, additional, Fürtig, Boris, additional, Hengesbach, Martin, additional, Löhr, Frank, additional, Qureshi, Nusrat, additional, Richter, Christian, additional, Saxena, Krishna, additional, Schlundt, Andreas, additional, Sreeramulu, Sridhar, additional, Wacker, Anna, additional, Weigand, Julia E., additional, Wirmer‐Bartoschek, Julia, additional, Wöhnert, Jens, additional, and Schwalbe, Harald, additional
- Published
- 2022
- Full Text
- View/download PDF
13. Towards a true protein movie: A perspective on the potential impact of the ensemble-based structure determination using exact NOEs
- Author
-
Vögeli, Beat, Orts, Julien, Strotz, Dean, Chi, Celestine, Minges, Martina, Wälti, Marielle Aulikki, Güntert, Peter, and Riek, Roland
- Published
- 2014
- Full Text
- View/download PDF
14. Proteome‐wide analysis of phospho‐regulated PDZ domain interactions
- Author
-
Sundell, Gustav N, Arnold, Roland, Ali, Muhammad, Naksukpaiboon, Piangfan, Orts, Julien, Güntert, Peter, Chi, Celestine N, and Ivarsson, Ylva
- Published
- 2018
- Full Text
- View/download PDF
15. An improved, time-efficient approach to extract accurate distance restraints for NMR2 structure calculation
- Author
-
Pokharna, Aditya, Torres, Felix, Kadavath, Harindranath, Orts, Julien, and Riek, Roland
- Abstract
Exact nuclear Overhauser enhancement (eNOE) yields highly accurate, ensemble averaged 1H-1H distance restraints with an accuracy of up to 0.1 Å for the multi-state structure determination of proteins as well as for nuclear magnetic resonance molecular replacement (NMR2) to determine the structure of the protein-ligand interaction site in a time-efficient manner. However, in the latter application, the acquired eNOEs lack the obtainable precision of 0.1 Å because of the asymmetrical nature of the filtered nuclear Overhauser enhancement spectroscopy (NOESY) experiment used in NMR2. This error is further propagated to the eNOE equations used to fit and extract the distance restraints. In this work, a new analysis method is proposed to obtain inter-molecular distance restraints from the filtered NOESY spectrum more accurately and intuitively by dividing the NOE cross peak by the corresponding diagonal peak of the ligand. The method termed diagonal-normalised eNOEs was tested on the data acquired by on the complex of PIN1 and a small, weak-binding phenylimidazole fragment. NMR2 calculations performed using the distances derived from diagonal-normalised eNOEs yielded the right orientation of the fragment in the binding pocket and produced a structure that more closely resembles the benchmark X-ray structure (2XP6) with an average heavy-atom root-mean-square deviation (RMSD) of 1.681 Å with respect to it, when compared to the one produced with traditional NMR2 with an average heavy atom RMSD of 3.628 Å. This is attributed to the higher precision of the evaluated distance restraints., Magnetic Resonance, 3 (2), ISSN:2699-0016
- Published
- 2022
16. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
- Author
-
Altincekic, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio C. L., Alshamleh, Islam, de Amorim, Gisele Cardoso, Anderson, Thomas K., Anobom, Cristiane D., Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Adriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo R., Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise G., Jesus, Vanessa de, Dhamotharan, Karthikeyan, Felli, Isabella C., Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos K., Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh L., Gerez, Juan Atilio, Ghosh, Dhiman, Gomes-Neto, Francisco, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, K., Hoch, Jeffrey C., Hohmann, Katharina F., Hutchison, Marie T., Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalniņš, Gints, Kaņepe, Iveta, Kirchdoerfer, Robert N., Kirkpatrick, John, Knapp, Stefan, Krishnathas, Robin, Kutz, Felicitas, Lage, Susanne zur, Lambertz, Roderick, Lang, Andras, Laurents, Douglas, Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Malki, Anas, Bessa, Luiza Mamigonian, Martin, Rachel W., Matzel, Tobias, Maurin, Damien, McNutt, Seth W., Mebus-Antunes, Nathane Cunha, Meier, Beat H., Meiser, Nathalie, Mompeán, Miguel, Monaca, Elisa, Montserret, Roland, Mariño Perez, Laura, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Da Poian, Andrea T., Pyper, Dennis J., Richter, Christian, Riek, Roland, Rienstra, Chad M., Robertson, Angus, Pinheiro, Anderson S., Sabbatella, Raffaele, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, da Silva Almeida, Marcius, Sprague-Piercy, Marc A., Spyroulias, Georgios A., Sreeramulu, Sridhar, Tants, Jan-Niklas, Tārs, Kaspars, Torres, Felix, Töws, Sabrina, Treviño, Miguel Á., Trucks, Sven, Tsika, Aikaterini C., Varga, Krisztina, Wang, Ying, Weber, Marco E., Weigand, Julia E., Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, Schlundt, Andreas, Altincekic, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio C. L., Alshamleh, Islam, de Amorim, Gisele Cardoso, Anderson, Thomas K., Anobom, Cristiane D., Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Adriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo R., Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise G., Jesus, Vanessa de, Dhamotharan, Karthikeyan, Felli, Isabella C., Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos K., Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh L., Gerez, Juan Atilio, Ghosh, Dhiman, Gomes-Neto, Francisco, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, K., Hoch, Jeffrey C., Hohmann, Katharina F., Hutchison, Marie T., Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalniņš, Gints, Kaņepe, Iveta, Kirchdoerfer, Robert N., Kirkpatrick, John, Knapp, Stefan, Krishnathas, Robin, Kutz, Felicitas, Lage, Susanne zur, Lambertz, Roderick, Lang, Andras, Laurents, Douglas, Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Malki, Anas, Bessa, Luiza Mamigonian, Martin, Rachel W., Matzel, Tobias, Maurin, Damien, McNutt, Seth W., Mebus-Antunes, Nathane Cunha, Meier, Beat H., Meiser, Nathalie, Mompeán, Miguel, Monaca, Elisa, Montserret, Roland, Mariño Perez, Laura, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Da Poian, Andrea T., Pyper, Dennis J., Richter, Christian, Riek, Roland, Rienstra, Chad M., Robertson, Angus, Pinheiro, Anderson S., Sabbatella, Raffaele, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, da Silva Almeida, Marcius, Sprague-Piercy, Marc A., Spyroulias, Georgios A., Sreeramulu, Sridhar, Tants, Jan-Niklas, Tārs, Kaspars, Torres, Felix, Töws, Sabrina, Treviño, Miguel Á., Trucks, Sven, Tsika, Aikaterini C., Varga, Krisztina, Wang, Ying, Weber, Marco E., Weigand, Julia E., Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, and Schlundt, Andreas
- Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
- Published
- 2022
17. Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development
- Author
-
State of Hesse, German Research Foundation, European Commission, Ministero dell'Istruzione, dell'Università e della Ricerca, Agence Nationale de la Recherche (France), Centre National de la Recherche Scientifique (France), National Institutes of Health (US), National Science Foundation (US), Latvian Council of Science, Berg, Hannes [0000-0002-2060-4296], Wirtz Martin, Maria A. [0000-0002-0318-7785], Altincekic, Nadide [0000-0001-6370-3414], Alshamleh, Islam [0000-0001-6714-3602], Dhamotharan, Karthikeyan [0000-0003-0226-7350], Marianne Korn, Sophie [0000-0003-3798-3277], Schulte, Linda [0000-0002-9334-8908], da Silva Almeida, Marcius [0000-0003-4921-8185], Caterina Felli, Isabella [0000-0002-6018-9090], Fourkiotis, Nikolaos K. [0000-0002-5197-4142], Gallo, Angelo [0000-0001-9778-4822], Ninot-Pedrosa, Martí [0000-0003-2851-9990], Pontoriero, Letizia [0000-0002-5586-1305], Treviño, Miguel A. [0000-0002-0738-5973], Tsika, Aikaterini C. [000-0002-3723-0606], Almeida, Fabio C.L. [0000-0001-6046-7006], Bax, Ad [0000-0002-9809-5700], Henzler-Wildman, Katherine [0000-0002-5295-2121], Hoch, Jeffrey C. [0000-0002-9230-2019], Jaudzems, Kristaps [0000-0003-3922-2447], Laurents, D.V. [0000-0002-4187-165X], Ferner, Jan [0000-0002-2009-3203], Hengesbach, Martin [0000-0001-9414-1602], Löhr, Frank [0000-0001-6399-9497], Qureshi, Nusrat [0000-0002-5753-5984], Richter, Christian [0000-0002-5420-2826], Schlundt, Andreas [0000-0003-2254-7560], Weigand, Julia E. [0000-0003-4247-1348], Wirmer-Bartoschek, Julia [0000-0002-0642-1311], Schwalbe, Harald [0000-0001-5693-7909], Berg, Hannes, Wirtz Martin, Maria A., Altincekic, Nadide, Alshamleh, Islam, Kaur Bains, Jasleen, Blechar, Julius, Ceylan, Betül, Jesus, Vanessa de, Dhamotharan, Karthikeyan, Fuks, Christin, Gande, Santosh L., Hargittay, Bruno, Hohmann, Katharina F., Hutchison, Marie T., Marianne Korn, Sophie, Krishnathas, Robin, Kutz, Felicitas, Linhard, Verena, Matzel, Tobias, Meiser, Nathalie, Niesteruk, Anna, Pyper, Dennis J., Schulte, Linda, Trucks, Sven, Azzaoui, Kamal, Blommers, Marcel J.J., Gadiya, Yojana, Karki, Reagon, Zaliani, Andrea, Gribbon, Philip, da Silva Almeida, Marcius, Dinis Anobom, Cristiane, Bula, Anna L., Bütikofer, Matthias, Putinhon Caruso, Ícaro, Caterina Felli, Isabella, Da Poian, Andrea T., Cardoso de Amorim, Gisele, Fourkiotis, Nikolaos K., Gallo, Angelo, Ghosh, Dhiman, Gomes-Neto, Francisco, Gorbatyuk, Oksana, Hao, Bing, Kurauskas, Vilius, Lecoq, Lauriane, Li, Yunfeng, Cunha Mebus-Antunes, Nathane, Mompeán, Miguel, Cristtina Neves-Martins, Thais, Ninot-Pedrosa, Martí, Pinheiro, Anderson S.., Pontoriero, Letizia, Pustovalova, Yulia, Riek, Roland, Robertson, Angus J., Jose Abi Saad, Marie, Treviño, Miguel A., Tsika, Aikaterini C., Almeida, Fabio C.L., Bax, Ad, Henzler-Wildman, Katherine, Hoch, Jeffrey C., Jaudzems, Kristaps, Laurents, Douglas V., Orts, Julien, Pierattelli, Roberta, Spyroulias, Georgios A., Duchardt-Ferner, Elke, Ferner, Jan, Fürtig, Boris, Hengesbach, Martin, Löhr, Frank, Qureshi, Nusrat, Richter, Christian, Saxena, Krishna, Schlundt, Andreas, Sreeramulu, Sridhar, Wacker, Anna, Weigand, Julia E., Wirmer-Bartoschek, Julia, Wöhnert, Jens, Schwalbe, Harald, State of Hesse, German Research Foundation, European Commission, Ministero dell'Istruzione, dell'Università e della Ricerca, Agence Nationale de la Recherche (France), Centre National de la Recherche Scientifique (France), National Institutes of Health (US), National Science Foundation (US), Latvian Council of Science, Berg, Hannes [0000-0002-2060-4296], Wirtz Martin, Maria A. [0000-0002-0318-7785], Altincekic, Nadide [0000-0001-6370-3414], Alshamleh, Islam [0000-0001-6714-3602], Dhamotharan, Karthikeyan [0000-0003-0226-7350], Marianne Korn, Sophie [0000-0003-3798-3277], Schulte, Linda [0000-0002-9334-8908], da Silva Almeida, Marcius [0000-0003-4921-8185], Caterina Felli, Isabella [0000-0002-6018-9090], Fourkiotis, Nikolaos K. [0000-0002-5197-4142], Gallo, Angelo [0000-0001-9778-4822], Ninot-Pedrosa, Martí [0000-0003-2851-9990], Pontoriero, Letizia [0000-0002-5586-1305], Treviño, Miguel A. [0000-0002-0738-5973], Tsika, Aikaterini C. [000-0002-3723-0606], Almeida, Fabio C.L. [0000-0001-6046-7006], Bax, Ad [0000-0002-9809-5700], Henzler-Wildman, Katherine [0000-0002-5295-2121], Hoch, Jeffrey C. [0000-0002-9230-2019], Jaudzems, Kristaps [0000-0003-3922-2447], Laurents, D.V. [0000-0002-4187-165X], Ferner, Jan [0000-0002-2009-3203], Hengesbach, Martin [0000-0001-9414-1602], Löhr, Frank [0000-0001-6399-9497], Qureshi, Nusrat [0000-0002-5753-5984], Richter, Christian [0000-0002-5420-2826], Schlundt, Andreas [0000-0003-2254-7560], Weigand, Julia E. [0000-0003-4247-1348], Wirmer-Bartoschek, Julia [0000-0002-0642-1311], Schwalbe, Harald [0000-0001-5693-7909], Berg, Hannes, Wirtz Martin, Maria A., Altincekic, Nadide, Alshamleh, Islam, Kaur Bains, Jasleen, Blechar, Julius, Ceylan, Betül, Jesus, Vanessa de, Dhamotharan, Karthikeyan, Fuks, Christin, Gande, Santosh L., Hargittay, Bruno, Hohmann, Katharina F., Hutchison, Marie T., Marianne Korn, Sophie, Krishnathas, Robin, Kutz, Felicitas, Linhard, Verena, Matzel, Tobias, Meiser, Nathalie, Niesteruk, Anna, Pyper, Dennis J., Schulte, Linda, Trucks, Sven, Azzaoui, Kamal, Blommers, Marcel J.J., Gadiya, Yojana, Karki, Reagon, Zaliani, Andrea, Gribbon, Philip, da Silva Almeida, Marcius, Dinis Anobom, Cristiane, Bula, Anna L., Bütikofer, Matthias, Putinhon Caruso, Ícaro, Caterina Felli, Isabella, Da Poian, Andrea T., Cardoso de Amorim, Gisele, Fourkiotis, Nikolaos K., Gallo, Angelo, Ghosh, Dhiman, Gomes-Neto, Francisco, Gorbatyuk, Oksana, Hao, Bing, Kurauskas, Vilius, Lecoq, Lauriane, Li, Yunfeng, Cunha Mebus-Antunes, Nathane, Mompeán, Miguel, Cristtina Neves-Martins, Thais, Ninot-Pedrosa, Martí, Pinheiro, Anderson S.., Pontoriero, Letizia, Pustovalova, Yulia, Riek, Roland, Robertson, Angus J., Jose Abi Saad, Marie, Treviño, Miguel A., Tsika, Aikaterini C., Almeida, Fabio C.L., Bax, Ad, Henzler-Wildman, Katherine, Hoch, Jeffrey C., Jaudzems, Kristaps, Laurents, Douglas V., Orts, Julien, Pierattelli, Roberta, Spyroulias, Georgios A., Duchardt-Ferner, Elke, Ferner, Jan, Fürtig, Boris, Hengesbach, Martin, Löhr, Frank, Qureshi, Nusrat, Richter, Christian, Saxena, Krishna, Schlundt, Andreas, Sreeramulu, Sridhar, Wacker, Anna, Weigand, Julia E., Wirmer-Bartoschek, Julia, Wöhnert, Jens, and Schwalbe, Harald
- Abstract
SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.
- Published
- 2022
18. An improved, time-efficient approach to extract accurate distance restraints for NMR<sup>2</sup> structure calculation
- Author
-
Pokharna, Aditya, primary, Torres, Felix, additional, Kadavath, Harindranath, additional, Orts, Julien, additional, and Riek, Roland, additional
- Published
- 2022
- Full Text
- View/download PDF
19. NMR Molecular Replacement Provides New Insights into Binding Modes to Bromodomains of BRD4 and TRIM24
- Author
-
Torres, Felix, primary, Walser, Reto, additional, Kaderli, Janina, additional, Rossi, Emanuele, additional, Bobby, Romel, additional, Packer, Martin J., additional, Sarda, Sunil, additional, Walker, Graeme, additional, Hitchin, James R., additional, Milbradt, Alexander G., additional, and Orts, Julien, additional
- Published
- 2022
- Full Text
- View/download PDF
20. The INPHARMA technique for pharmacophore mapping: A theoretical guide to the method
- Author
-
Orts, Julien, Griesinger, Christian, and Carlomagno, Teresa
- Published
- 2009
- Full Text
- View/download PDF
21. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
- Author
-
Altincekic, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio, Alshamleh, Islam, de Amorim, Gisele Cardoso, Anderson, Thomas, Anobom, Cristiane, Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Adriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo, Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise, de Jesus, Vanessa, Dhamotharan, Karthikeyan, Felli, Isabella, Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos, Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh, Gerez, Juan Atilio, Ghosh, Dhiman, GOMES-NETO, Francisco, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, K., Hoch, Jeffrey, Hohmann, Katharina, Hutchison, Marie, Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalniņš, Gints, Kaņepe, Iveta, Kirchdoerfer, Robert, Kirkpatrick, John, Knapp, Stefan, Krishnathas, Robin, Kutz, Felicitas, zur Lage, Susanne, Lambertz, Roderick, Lang, Andras, Laurents, Douglas, Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Malki, Anas, Bessa, Luiza Mamigonian, Martin, Rachel, Matzel, Tobias, Maurin, Damien, McNutt, Seth, Mebus-Antunes, Nathane Cunha, Meier, Beat, Meiser, Nathalie, Mompeán, Miguel, Monaca, Elisa, Montserret, Roland, Mariño Perez, Laura, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Da Poian, Andrea, Pyper, Dennis, Richter, Christian, Riek, Roland, Rienstra, Chad, Robertson, Angus, Pinheiro, Anderson, Sabbatella, Raffaele, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, Almeida, Marcius da Silva, Sprague-Piercy, Marc, Spyroulias, Georgios, Sreeramulu, Sridhar, Tants, Jan-Niklas, Tārs, Kaspars, Torres, Felix, Töws, Sabrina, Treviño, Miguel, Trucks, Sven, Tsika, Aikaterini, Varga, Krisztina, Wang, Ying, Weber, Marco, Weigand, Julia, Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, Schlundt, Andreas, Treviño, Miguel Á., Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Microbiologie moléculaire et biochimie structurale / Molecular Microbiology and Structural Biochemistry (MMSB), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), ANR-17-EURE-0003,CBH-EUR-GS,CBH-EUR-GS(2017), Goethe University Frankfurt am Main, German Research Foundation, Cassa di Risparmio di Firenze, European Commission, University of New Hampshire, The Free State of Thuringia, National Institutes of Health (US), National Science Foundation (US), Howard Hughes Medical Institute, Latvian Council of Science, Ministry of Development and Investments (Greece), Helmholtz Association, Centre National de la Recherche Scientifique (France), Agence Nationale de la Recherche (France), Fondation pour la Recherche Médicale, Swiss National Science Foundation, Fonds National Suisse de la Recherche Scientifique, ETH Zurich, European Research Council, Université Grenoble Alpes, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Fundación 'la Caixa', Instituto de Salud Carlos III, Boehringer Ingelheim Fonds, Ministero dell'Istruzione, dell'Università e della Ricerca, Polytechnic Foundation of Frankfurt am Main, Goethe University Frankfurt, CNRS/Lyon University, Fondazione Ri.MED, Federal University of Rio de Janeiro, Caxias Federal University of Rio de Janeiro, University of Wisconsin-Madison, University of California, NIDDK, IBS, Latvian Institute of Organic Synthesis, Leibniz University Hannover, Helmholtz Centre for Infection Research, Universidade Estadual Paulista (Unesp), Buchmann Institute for Molecular Life Sciences, University of Florence, University of Patras, Oswaldo Cruz Foundation (FIOCRUZ), UConn Health, Signals GmbH Co. KG, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Latvian Biomedical Research and Study Centre, Spanish National Research Council (CSIC), Karlsruhe Institute of Technology, Technical University of Darmstadt, Martin Luther University Halle-Wittenberg, Altincekic N., Korn S.M., Qureshi N.S., Dujardin M., Ninot-Pedrosa M., Abele R., Abi Saad M.J., Alfano C., Almeida F.C.L., Alshamleh I., de Amorim G.C., Anderson T.K., Anobom C.D., Anorma C., Bains J.K., Bax A., Blackledge M., Blechar J., Bockmann A., Brigandat L., Bula A., Butikofer M., Camacho-Zarco A.R., Carlomagno T., Caruso I.P., Ceylan B., Chaikuad A., Chu F., Cole L., Crosby M.G., de Jesus V., Dhamotharan K., Felli I.C., Ferner J., Fleischmann Y., Fogeron M.-L., Fourkiotis N.K., Fuks C., Furtig B., Gallo A., Gande S.L., Gerez J.A., Ghosh D., Gomes-Neto F., Gorbatyuk O., Guseva S., Hacker C., Hafner S., Hao B., Hargittay B., Henzler-Wildman K., Hoch J.C., Hohmann K.F., Hutchison M.T., Jaudzems K., Jovic K., Kaderli J., Kalnins G., Kanepe I., Kirchdoerfer R.N., Kirkpatrick J., Knapp S., Krishnathas R., Kutz F., zur Lage S., Lambertz R., Lang A., Laurents D., Lecoq L., Linhard V., Lohr F., Malki A., Bessa L.M., Martin R.W., Matzel T., Maurin D., McNutt S.W., Mebus-Antunes N.C., Meier B.H., Meiser N., Mompean M., Monaca E., Montserret R., Marino Perez L., Moser C., Muhle-Goll C., Neves-Martins T.C., Ni X., Norton-Baker B., Pierattelli R., Pontoriero L., Pustovalova Y., Ohlenschlager O., Orts J., Da Poian A.T., Pyper D.J., Richter C., Riek R., Rienstra C.M., Robertson A., Pinheiro A.S., Sabbatella R., Salvi N., Saxena K., Schulte L., Schiavina M., Schwalbe H., Silber M., Almeida M.D.S., Sprague-Piercy M.A., Spyroulias G.A., Sreeramulu S., Tants J.-N., Tars K., Torres F., Tows S., Trevino M.A., Trucks S., Tsika A.C., Varga K., Wang Y., Weber M.E., Weigand J.E., Wiedemann C., Wirmer-Bartoschek J., Wirtz Martin M.A., Zehnder J., Hengesbach M., Schlundt A., HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany., and Obra Social la Caixa
- Subjects
Life sciences ,biology ,SARS-COV-2 ,COVID-19 ,protein production ,structural biology, NMR ,[SDV.BIO]Life Sciences [q-bio]/Biotechnology ,Biochemistry, Genetics and Molecular Biology (miscellaneous) ,Biochemistry ,Accessory proteins ,NMR spectroscopy ,ddc:570 ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Molecular Biosciences ,ddc:610 ,Nonstructural proteins ,Molecular Biology ,Original Research ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,SARS-CoV-2 ,Intrinsically disordered region ,nonstructural proteins ,structural proteins ,Cell-free protein synthesis ,intrinsically disordered region ,cell-free protein synthesis ,accessory proteins ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Structural proteins - Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form., This work was supported by Goethe University (Corona funds), the DFG-funded CRC: “Molecular Principles of RNA-Based Regulation,” DFG infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611), the state of Hesse (BMRZ), the Fondazione CR Firenze (CERM), and the IWB-EFRE-program 20007375. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 871037. AS is supported by DFG Grant SCHL 2062/2-1 and by the JQYA at Goethe through project number 2019/AS01. Work in the lab of KV was supported by a CoRE grant from the University of New Hampshire. The FLI is a member of the Leibniz Association (WGL) and financially supported by the Federal Government of Germany and the State of Thuringia. Work in the lab of RM was supported by NIH (2R01EY021514) and NSF (DMR-2002837). BN-B was supported by theNSF GRFP.MCwas supported byNIH (R25 GM055246 MBRS IMSD), and MS-P was supported by the HHMI Gilliam Fellowship. Work in the labs of KJ and KT was supported by Latvian Council of Science Grant No. VPP-COVID 2020/1-0014. Work in the UPAT’s lab was supported by the INSPIRED (MIS 5002550) project, which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and cofinanced by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011- 285950–“SEE-DRUG” project (purchase of UPAT’s 700MHz NMR equipment). Work in the CM-G lab was supported by the Helmholtz society. Work in the lab of ABö was supported by the CNRS, the French National Research Agency (ANR, NMRSCoV2- ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), and the IR-RMN-THC Fr3050 CNRS. Work in the lab of BM was supported by the Swiss National Science Foundation (Grant number 200020_188711), the Günthard Stiftung für Physikalische Chemie, and the ETH Zurich. Work in the labs of ABö and BM was supported by a common grant from SNF (grant 31CA30_196256). This work was supported by the ETHZurich, the grant ETH40 18 1, and the grant Krebsliga KFS 4903 08 2019. Work in the lab of the IBS Grenoble was supported by the Agence Nationale de Recherche (France) RA-COVID SARS2NUCLEOPROTEIN and European Research Council Advanced Grant DynamicAssemblies. Work in the CA lab was supported by Patto per il Sud della Regione Siciliana–CheMISt grant (CUP G77B17000110001). Part of this work used the platforms of the Grenoble Instruct-ERIC center (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-05-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE- 0003). Work at the UW-Madison was supported by grant numbers NSF MCB2031269 and NIH/NIAID AI123498. MM is a Ramón y Cajal Fellow of the Spanish AEI-Ministry of Science and Innovation (RYC2019-026574-I), and a “La Caixa” Foundation (ID 100010434) Junior Leader Fellow (LCR/BQ/PR19/11700003). Funded by project COV20/00764 fromthe Carlos III Institute of Health and the SpanishMinistry of Science and Innovation to MMand DVL. VDJ was supported by the Boehringer Ingelheim Fonds. Part of this work used the resources of the Italian Center of Instruct-ERIC at the CERM/ CIRMMP infrastructure, supported by the Italian Ministry for University and Research (FOE funding). CF was supported by the Stiftung Polytechnische Gesellschaft. Work in the lab of JH was supported by NSF (RAPID 2030601) and NIH (R01GM123249).
- Published
- 2021
- Full Text
- View/download PDF
22. Stereospecific assignments in proteins using exact NOEs
- Author
-
Orts, Julien, Vögeli, Beat, Riek, Roland, and Güntert, Peter
- Published
- 2013
- Full Text
- View/download PDF
23. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
- Author
-
Altınçekiç, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio C. L., Alshamleh, Islam, Amorim, Gisele Cardoso de, Anderson, Thomas K., Anobom, Cristiane D., Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Adriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo R., Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise G., De Jesus, Vanessa, Dhamotharan, Karthikeyan, Felli, Isabella C., Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos K., Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh L., Gerez, Juan Atilio, Ghosh, Dhiman, Gomes-Neto, Francisco, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, Katherine, Hoch, Jeffrey C., Hohmann, Katharina Felicitas, Hutchison, Marie T., Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalnins, Gints, Kanepe, Iveta, Kirchdoerfer, Robert N., Kirkpatrick, John, Knapp, Stefan, Krishnathas, Robin, Kutz, Felicitas, Zur Lage, Susanne, Lambertz, Roderick, Lang, Andras, Laurents, Douglas, Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Malki, Anas, Bessa, Luiza Mamigonian, Martin, Rachel W., Matzel, Tobias, Maurin, Damien, McNutt, Seth W., Mebus-Antunes, Nathane Cunha, Meier, Beat H., Meiser, Nathalie, Mompeán, Miguel, Monaca, Elisa, Montserret, Roland, Perez, Laura Mariño, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Poian, Andrea T. da, Pyper, Dennis Joshua, Richter, Christian, Riek, Roland, Rienstra, Chad M., Robertson, Angus, Pinheiro, Anderson S., Sabbatella, Raffaele, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, Almeida, Marcius da Silva, Sprague-Piercy, Marc A., Spyroulias, Georgios A., Sreeramulu, Sridhar, Tants, Jan-Niklas, Tars, Kaspars, Torres, Felix, Töws, Sabrina, Trevino, Miguel A., Trucks, Sven, Tsika, Aikaterini C., Varga, Krisztina, Wang, Ying, Weber, Marco E., Weigand, Julia E., Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, Schlundt, Andreas, Altınçekiç, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio C. L., Alshamleh, Islam, Amorim, Gisele Cardoso de, Anderson, Thomas K., Anobom, Cristiane D., Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Adriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo R., Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise G., De Jesus, Vanessa, Dhamotharan, Karthikeyan, Felli, Isabella C., Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos K., Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh L., Gerez, Juan Atilio, Ghosh, Dhiman, Gomes-Neto, Francisco, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, Katherine, Hoch, Jeffrey C., Hohmann, Katharina Felicitas, Hutchison, Marie T., Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalnins, Gints, Kanepe, Iveta, Kirchdoerfer, Robert N., Kirkpatrick, John, Knapp, Stefan, Krishnathas, Robin, Kutz, Felicitas, Zur Lage, Susanne, Lambertz, Roderick, Lang, Andras, Laurents, Douglas, Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Malki, Anas, Bessa, Luiza Mamigonian, Martin, Rachel W., Matzel, Tobias, Maurin, Damien, McNutt, Seth W., Mebus-Antunes, Nathane Cunha, Meier, Beat H., Meiser, Nathalie, Mompeán, Miguel, Monaca, Elisa, Montserret, Roland, Perez, Laura Mariño, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Poian, Andrea T. da, Pyper, Dennis Joshua, Richter, Christian, Riek, Roland, Rienstra, Chad M., Robertson, Angus, Pinheiro, Anderson S., Sabbatella, Raffaele, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, Almeida, Marcius da Silva, Sprague-Piercy, Marc A., Spyroulias, Georgios A., Sreeramulu, Sridhar, Tants, Jan-Niklas, Tars, Kaspars, Torres, Felix, Töws, Sabrina, Trevino, Miguel A., Trucks, Sven, Tsika, Aikaterini C., Varga, Krisztina, Wang, Ying, Weber, Marco E., Weigand, Julia E., Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, and Schlundt, Andreas
- Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
- Published
- 2021
24. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
- Author
-
Goethe University Frankfurt am Main, German Research Foundation, Cassa di Risparmio di Firenze, European Commission, University of New Hampshire, The Free State of Thuringia, National Institutes of Health (US), National Science Foundation (US), Howard Hughes Medical Institute, Latvian Council of Science, Ministry of Development and Investments (Greece), Helmholtz Association, Centre National de la Recherche Scientifique (France), Agence Nationale de la Recherche (France), Fondation pour la Recherche Médicale, Swiss National Science Foundation, Fonds National Suisse de la Recherche Scientifique, ETH Zurich, European Research Council, Université Grenoble Alpes, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Fundación la Caixa, Instituto de Salud Carlos III, Boehringer Ingelheim Fonds, Ministero dell'Istruzione, dell'Università e della Ricerca, Polytechnic Foundation of Frankfurt am Main, Altincekic, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio C. L., Alshamleh, Islam, Cardoso de Amorim, Gisele, Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Andriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo R., Ghosh, Dhiman, Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise G., Jesus, Vanessa de, Dhamotharan, Karthikeyan, Felli, Isabella C., Gomes-Neto, Francisco, Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos K., Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh L., Gerez, Juan Atilio, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, K., Hoch, Jeffrey C., Malki, Anas, Hohmann, Katharina F., Hutchison, Marie T., Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalniņš, Gints, Kaņepe, Iveta, Kirchdoerfer, Robert N., Kirkpatrick, John, Knapp, Stefan, Bessa, Luiza Mamigonian, Krishnathas, Robin, Kutz, Felicitas, Lage, Susanne zur, Lambertz, Roderick, Lang, Andras, Laurents, Douglas V., Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Martin, Rachel W., Matzel, Tobias, Maurin, Damien, McNutt, Seth W., Mebus-Antunes, Nathane Cunha, Meier, Beat H., Meiser, Nathalie, Mompeán, Miguel, Pinheiro, Anderson S.., Monaca, Elisa, Montserret, Roland, Mariño Perez, Laura, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Sabbatella, Raffaele, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Da Poian, Andrea T., Pyper, Dennis J., Richter, Christian, Riek, Roland, Rienstra, Chad M., Robertson, Angus, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, Silva Almeida, Marcius da, Sprague-Piercy, Marc A., Anderson, Thomas K., Spyroulias, Georgios A., Sreeramulu, Sridhar, Tants, Jan-Niklas, Tārs, Kaspars, Torres, Felix, Töws, Sabrina, Treviño, Miguel A., Trucks, Sven, Tsika, Aikaterini C., Varga, Krisztina, Anobom, Cristiane D., Wang, Ying, Weber, Marco E., Weigand, Julia E., Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, Schlundt, Andreas, Goethe University Frankfurt am Main, German Research Foundation, Cassa di Risparmio di Firenze, European Commission, University of New Hampshire, The Free State of Thuringia, National Institutes of Health (US), National Science Foundation (US), Howard Hughes Medical Institute, Latvian Council of Science, Ministry of Development and Investments (Greece), Helmholtz Association, Centre National de la Recherche Scientifique (France), Agence Nationale de la Recherche (France), Fondation pour la Recherche Médicale, Swiss National Science Foundation, Fonds National Suisse de la Recherche Scientifique, ETH Zurich, European Research Council, Université Grenoble Alpes, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Fundación la Caixa, Instituto de Salud Carlos III, Boehringer Ingelheim Fonds, Ministero dell'Istruzione, dell'Università e della Ricerca, Polytechnic Foundation of Frankfurt am Main, Altincekic, Nadide, Korn, Sophie Marianne, Qureshi, Nusrat Shahin, Dujardin, Marie, Ninot-Pedrosa, Martí, Abele, Rupert, Abi Saad, Marie Jose, Alfano, Caterina, Almeida, Fabio C. L., Alshamleh, Islam, Cardoso de Amorim, Gisele, Anorma, Chelsea, Bains, Jasleen Kaur, Bax, Andriaan, Blackledge, Martin, Blechar, Julius, Böckmann, Anja, Brigandat, Louis, Bula, Anna, Bütikofer, Matthias, Camacho-Zarco, Aldo R., Ghosh, Dhiman, Carlomagno, Teresa, Caruso, Icaro Putinhon, Ceylan, Betül, Chaikuad, Apirat, Chu, Feixia, Cole, Laura, Crosby, Marquise G., Jesus, Vanessa de, Dhamotharan, Karthikeyan, Felli, Isabella C., Gomes-Neto, Francisco, Ferner, Jan, Fleischmann, Yanick, Fogeron, Marie-Laure, Fourkiotis, Nikolaos K., Fuks, Christin, Fürtig, Boris, Gallo, Angelo, Gande, Santosh L., Gerez, Juan Atilio, Gorbatyuk, Oksana, Guseva, Serafima, Hacker, Carolin, Häfner, Sabine, Hao, Bing, Hargittay, Bruno, Henzler-Wildman, K., Hoch, Jeffrey C., Malki, Anas, Hohmann, Katharina F., Hutchison, Marie T., Jaudzems, Kristaps, Jović, Katarina, Kaderli, Janina, Kalniņš, Gints, Kaņepe, Iveta, Kirchdoerfer, Robert N., Kirkpatrick, John, Knapp, Stefan, Bessa, Luiza Mamigonian, Krishnathas, Robin, Kutz, Felicitas, Lage, Susanne zur, Lambertz, Roderick, Lang, Andras, Laurents, Douglas V., Lecoq, Lauriane, Linhard, Verena, Löhr, Frank, Martin, Rachel W., Matzel, Tobias, Maurin, Damien, McNutt, Seth W., Mebus-Antunes, Nathane Cunha, Meier, Beat H., Meiser, Nathalie, Mompeán, Miguel, Pinheiro, Anderson S.., Monaca, Elisa, Montserret, Roland, Mariño Perez, Laura, Moser, Celine, Muhle-Goll, Claudia, Neves-Martins, Thais Cristtina, Ni, Xiamonin, Norton-Baker, Brenna, Pierattelli, Roberta, Pontoriero, Letizia, Sabbatella, Raffaele, Pustovalova, Yulia, Ohlenschläger, Oliver, Orts, Julien, Da Poian, Andrea T., Pyper, Dennis J., Richter, Christian, Riek, Roland, Rienstra, Chad M., Robertson, Angus, Salvi, Nicola, Saxena, Krishna, Schulte, Linda, Schiavina, Marco, Schwalbe, Harald, Silber, Mara, Silva Almeida, Marcius da, Sprague-Piercy, Marc A., Anderson, Thomas K., Spyroulias, Georgios A., Sreeramulu, Sridhar, Tants, Jan-Niklas, Tārs, Kaspars, Torres, Felix, Töws, Sabrina, Treviño, Miguel A., Trucks, Sven, Tsika, Aikaterini C., Varga, Krisztina, Anobom, Cristiane D., Wang, Ying, Weber, Marco E., Weigand, Julia E., Wiedemann, Christoph, Wirmer-Bartoschek, Julia, Wirtz Martin, Maria Alexandra, Zehnder, Johannes, Hengesbach, Martin, and Schlundt, Andreas
- Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
- Published
- 2021
25. The description of protein internal motions aids selection of ligand binding poses by the INPHARMA method
- Author
-
Stauch, Benjamin, Orts, Julien, and Carlomagno, Teresa
- Published
- 2012
- Full Text
- View/download PDF
26. An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude
- Author
-
Orts, Julien, Bartoschek, Stefan, Griesinger, Christian, Monecke, Peter, and Carlomagno, Teresa
- Published
- 2012
- Full Text
- View/download PDF
27. Protein allostery of the WW domain at atomic resolution
- Author
-
Strotz, Dean, Orts, Julien, Kadavath, Harindranath, Friedmann, Michael, Ghosh, Dhiman, Olsson, Simon, Chi, Celestine N., Güntert, Peter, Vögeli, Beat, and Riek, Roland
- Subjects
Models, Molecular ,NIMA-Interacting Peptidylprolyl Isomerase ,Allosteric Regulation ,Humans ,Article - Abstract
Confined by the Boltzmann distribution of the energies of states, motion is inherent to biomolecules. For a detailed understanding of a protein’s function, not only the 3D structure but also the description of its dynamics is thus required. This is particularly important in the elucidation of the nature of protein allostery. Protein allostery is a phenomenon involving the long range coupling between two distal sites in a protein. Here we study the enzyme Pin1, which features two flexibly thethered domains, the binding domain (WW) and the catalytic domain (PPI), that undergo coupled structural rearrangements. We present multi-state structures of the WW domain of the free form and in complex with two antagonizing ligands determined by experimentally-derived exact nuclear Overhauser effect (eNOE) rates. We find that the two ligands respectively strengthen and suppress the inter-domain allostery. In the absence of ligands, the protein undergoes a micro-second exchange between two states, one of which is predisposed to interact with the catalytic domain, while the other one is not. In presence of the positive allosteric ligand, the equilibrium between the two states is shifted towards the mode of ligand action, suggesting conformational selection as proposed by Monod. In contrast, the allostery-suppressing ligand decouples the side-chain arrangement at the interface into anti-correlated orientation and dynamics, thereby reducing the inter-domain interaction. As such, this mechanism is an example of dynamic allostery. The presented distinct modes of action highlight the power of the dynamics-function interplay in the biological activity of proteins.
- Published
- 2020
28. Protein Allostery at Atomic Resolution
- Author
-
Strotz, Dean, Orts, Julien, Kadavath, Harindranath, Friedmann, Michael, Ghosh, Dhiman, Olsson, Simon, Chi, Celestine N., Pokharna, Aditya, Guentert, Peter, Vogeli, Beat, Riek, Roland, Strotz, Dean, Orts, Julien, Kadavath, Harindranath, Friedmann, Michael, Ghosh, Dhiman, Olsson, Simon, Chi, Celestine N., Pokharna, Aditya, Guentert, Peter, Vogeli, Beat, and Riek, Roland
- Abstract
Protein allostery is a phenomenon involving the long range coupling between two distal sites in a protein. In order to elucidate allostery at atomic resoluion on the ligand-binding WW domain of the enzyme Pin1, multistate structures were calculated from exact nuclear Overhauser effect (eNOE). In its free form, the protein undergoes a microsecond exchange between two states, one of which is predisposed to interact with its parent catalytic domain. In presence of the positive allosteric ligand, the equilibrium between the two states is shifted towards domain-domain interaction, suggesting a population shift model. In contrast, the allostery-suppressing ligand decouples the side-chain arrangement at the inter-domain interface thereby reducing the inter-domain interaction. As such, this mechanism is an example of dynamic allostery. The presented distinct modes of action highlight the power of the interplay between dynamics and function in the biological activity of proteins.
- Published
- 2020
- Full Text
- View/download PDF
29. Protein Allostery at Atomic Resolution
- Author
-
Strotz, Dean, primary, Orts, Julien, additional, Kadavath, Harindranath, additional, Friedmann, Michael, additional, Ghosh, Dhiman, additional, Olsson, Simon, additional, Chi, Celestine N., additional, Pokharna, Aditya, additional, Güntert, Peter, additional, Vögeli, Beat, additional, and Riek, Roland, additional
- Published
- 2020
- Full Text
- View/download PDF
30. Protein–fragment complex structures derived by NMR molecular replacement
- Author
-
Torres, Felix, primary, Ghosh, Dhiman, additional, Strotz, Dean, additional, Chi, Celestine N., additional, Davis, Ben, additional, and Orts, Julien, additional
- Published
- 2020
- Full Text
- View/download PDF
31. Nuclear magnetic resonance structure-based drug design
- Author
-
Torres, Felix and Orts, Julien
- Abstract
Future Medicinal Chemistry, 10 (20), ISSN:1756-8927, ISSN:1756-8919
- Published
- 2018
32. Rational Structure‐Based Design of Fluorescent Probes for Amyloid Folds
- Author
-
Orts, Julien, primary, Aulikki Wälti, Marielle, additional, Ghosh, Dhiman, additional, Campioni, Silvia, additional, Saupe, Sven J., additional, and Riek, Roland, additional
- Published
- 2019
- Full Text
- View/download PDF
33. NMR2: A highly accurate approach to protein-ligand binding
- Author
-
Orts, Julien, primary
- Published
- 2019
- Full Text
- View/download PDF
34. Proteome‐wide analysis of phospho‐regulated PDZ domain interactions
- Author
-
Sundell, Gustav, Arnold, Roland, Ali, Muhammad, Naksukpaiboon, Piangfan, Orts, Julien, Güntert, Peter, Chi, Celestine N., Ivarsson, Ylva, Sundell, Gustav, Arnold, Roland, Ali, Muhammad, Naksukpaiboon, Piangfan, Orts, Julien, Güntert, Peter, Chi, Celestine N., and Ivarsson, Ylva
- Abstract
A key function of reversible protein phosphorylation is to regulate protein–protein interactions, many of which involve short linear motifs (3–12 amino acids). Motif‐based interactions are difficult to capture because of their often low‐to‐moderate affinities. Here, we describe phosphomimetic proteomic peptide‐phage display, a powerful method for simultaneously finding motif‐based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C‐terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD‐95/Dlg/ZO‐1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR. We uncover site‐specific phospho‐regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho‐regulation of motif‐based interactions on a large scale.
- Published
- 2018
- Full Text
- View/download PDF
35. Proteome‐wide analysis of phospho‐regulated PDZ domain interactions
- Author
-
Sundell, Gustav N., Arnold, Roland, Ali, Muhammad, Naksukpaiboon, Piangfan, Orts, Julien, Güntert, Peter, Chi, Celestine N., Ivarsson, Ylva, Sundell, Gustav N., Arnold, Roland, Ali, Muhammad, Naksukpaiboon, Piangfan, Orts, Julien, Güntert, Peter, Chi, Celestine N., and Ivarsson, Ylva
- Abstract
A key function of reversible protein phosphorylation is to regulate protein–protein interactions, many of which involve short linear motifs (3–12 amino acids). Motif‐based interactions are difficult to capture because of their often low‐to‐moderate affinities. Here, we describe phosphomimetic proteomic peptide‐phage display, a powerful method for simultaneously finding motif‐based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C‐terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD‐95/Dlg/ZO‐1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR. We uncover site‐specific phospho‐regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho‐regulation of motif‐based interactions on a large scale.
- Published
- 2018
36. Stereospecific assignments in proteins using exact NOEs
- Author
-
Orts, Julien, Vögeli, Beat, Riek, Roland, Güntert, Peter, Orts, Julien, Vögeli, Beat, Riek, Roland, and Güntert, Peter
- Abstract
Recently developed methods to measure distances in proteins with high accuracy by "exact” nuclear Overhauser effects (eNOEs) make it possible to determine stereospecific assignments, which are particularly important to fully exploit the accuracy of the eNOE distance measurements. Stereospecific assignments are determined by comparing the eNOE-derived distances to protein structure bundles calculated without stereospecific assignments, or an independently determined crystal structure. The absolute and relative CYANA target function difference upon swapping the stereospecific assignment of a diastereotopic group yields the respective stereospecific assignment. We applied the method to the eNOE data set that has recently been obtained for the third immunoglobulin-binding domain of protein G (GB3). The 884 eNOEs provide relevant data for 47 of the total of 75 diastereotopic groups. Stereospecific assignments could be established for 45 diastereotopic groups (96%) using the X-ray structure, or for 27 diastereotopic groups (57%) using structures calculated with the eNOE data set without stereospecific assignments, all of which are in agreement with those determined previously. The latter case is relevant for structure determinations based on eNOEs. The accuracy of the eNOE distance measurements is crucial for making stereospecific assignments because applying the same method to the traditional NOE data set for GB3 with imprecise upper distance bounds yields only 13 correct stereospecific assignments using the X-ray structure or 2 correct stereospecific assignments using NMR structures calculated without stereospecific assignments
- Published
- 2018
37. Protein—ligand structure determination with the NMR molecular replacement tool, NMR2.
- Author
-
Orts, Julien and Riek, Roland
- Subjects
SMALL molecules ,PROTEIN structure ,PROTEINS ,ALGORITHMS ,NUCLEAR magnetic resonance spectroscopy - Abstract
We recently reported on a new method called NMR Molecular Replacement that efficiently derives the structure of a protein—ligand complex at the interaction site. The method was successfully applied to high and low affinity complexes covering ligands from peptides to small molecules. The algorithm used in the NMR Molecular Replacement program has until now not been described in detail. Here, we present a complete description of the NMR Molecular Replacement implementation as well as several new features that further reduce the time required for structure elucidation. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
38. Structure determination of protein-ligand complexes by NMR in solution
- Author
-
Orts, Julien, primary and Gossert, Alvar D., additional
- Published
- 2018
- Full Text
- View/download PDF
39. The NMR2 Method to Determine Rapidly the Structure of the Binding Pocket of a Protein–Ligand Complex with High Accuracy
- Author
-
Wälti, Marielle, primary and Orts, Julien, additional
- Published
- 2018
- Full Text
- View/download PDF
40. The Exact Nuclear Overhauser Enhancement : Recent Advances
- Author
-
Nichols, Parker J., Born, Alexandra, Henen, Morkos A., Strotz, Dean, Orts, Julien, Olsson, Simon, Güntert, Peter, Chi, Celestine N., Vögeli, Beat, Nichols, Parker J., Born, Alexandra, Henen, Morkos A., Strotz, Dean, Orts, Julien, Olsson, Simon, Güntert, Peter, Chi, Celestine N., and Vögeli, Beat
- Abstract
Although often depicted as rigid structures, proteins are highly dynamic systems, whose motions are essential to their functions. Despite this, it is difficult to investigate protein dynamics due to the rapid timescale at which they sample their conformational space, leading most NMR-determined structures to represent only an averaged snapshot of the dynamic picture. While NMR relaxation measurements can help to determine local dynamics, it is difficult to detect translational or concerted motion, and only recently have significant advances been made to make it possible to acquire a more holistic representation of the dynamics and structural landscapes of proteins. Here, we briefly revisit our most recent progress in the theory and use of exact nuclear Overhauser enhancements (eNOEs) for the calculation of structural ensembles that describe their conformational space. New developments are primarily targeted at increasing the number and improving the quality of extracted eNOE distance restraints, such that the multi-state structure calculation can be applied to proteins of higher molecular weights. We then review the implications of the exact NOE to the protein dynamics and function of cyclophilin A and the WW domain of Pin1, and finally discuss our current research and future directions.
- Published
- 2017
- Full Text
- View/download PDF
41. eNORA2 Exact NOE Analysis Program
- Author
-
Strotz, Dean, Orts, Julien, Chi, Celestine N., Riek, Roland, Vögeli, Beat, Strotz, Dean, Orts, Julien, Chi, Celestine N., Riek, Roland, and Vögeli, Beat
- Abstract
We have recently developed an NMR protocol to extract exact distances between nuclei in proteins from an exact interpretation of NOESY buildup intensities (eNOEs). This enabled us to calculate multistate structural ensembles that exhibit realistic spatial sampling and long-range correlations. Our initial studies were laborious and required a deep understanding of the underlying spin dynamics. Here, we present a MatLab package that integrates all data processing steps required to convert intensities of assigned peaks in NOESY series into upper and lower distance limits for structure calculation. Those steps include organization of the data in object format, extraction of autorelaxation and cross-relaxation rate constants by fitting of diagonal peak decays and cross peak buildups, validation of the data, correction for spin diffusion, graphical display of the results, and generation of distance limits in CYANA compatible format. The analysis may be carried out using a full relaxation matrix or a simplified "divide and conquer" approach that allows for partial deuteration of protons. As the program does not require expertise beyond that of standard resonance assignment/structure calculation, it is suitable for experts and nonexperts alike.
- Published
- 2017
- Full Text
- View/download PDF
42. Proteome-wide analysis of phospho-regulated PDZ domain interactions through phosphomimetic proteomic peptide phage display
- Author
-
Sundell, Gustav N., primary, Arnold, Roland, additional, Ali, Muhammad, additional, Orts, Julien, additional, Güntert, Peter, additional, Chi, Celestine N., additional, and Ivarsson, Ylva, additional
- Published
- 2017
- Full Text
- View/download PDF
43. eNORA2 Exact NOE Analysis Program
- Author
-
Strotz, Dean, primary, Orts, Julien, additional, Chi, Celestine N., additional, Riek, Roland, additional, and Vögeli, Beat, additional
- Published
- 2017
- Full Text
- View/download PDF
44. The Exact Nuclear Overhauser Enhancement: Recent Advances
- Author
-
Nichols, Parker, primary, Born, Alexandra, additional, Henen, Morkos, additional, Strotz, Dean, additional, Orts, Julien, additional, Olsson, Simon, additional, Güntert, Peter, additional, Chi, Celestine, additional, and Vögeli, Beat, additional
- Published
- 2017
- Full Text
- View/download PDF
45. Fast NMR-Based Determination of the 3D Structure of the Binding Site of Protein-Ligand Complexes with Weak Affinity Binders
- Author
-
Wälti, Marielle A., primary, Riek, Roland, additional, and Orts, Julien, additional
- Published
- 2017
- Full Text
- View/download PDF
46. Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph
- Author
-
Wälti, Marielle Aulikki, primary, Orts, Julien, additional, and Riek, Roland, additional
- Published
- 2017
- Full Text
- View/download PDF
47. Protein–fragment complex structures derived by NMR molecular replacementElectronic supplementary information (ESI) available: ESI Fig. S1–S8, and Table S1 and S2. See DOI:10.1039/d0md00068j
- Author
-
Torres, Felix, Ghosh, Dhiman, Strotz, Dean, ChiNew address: Department of Medical Biochemistry, Celestine N., Microbiology, bmc, University, Uppsala, Sweden, Davis, Ben, and Orts, Julien
- Abstract
Recently we have established an NMR molecular replacement method, which is capable of solving the structure of the interaction site of protein–ligand complexes in a fully automated manner. While the method was successfully applied for ligands with strong and weak binding affinities, including small molecules and peptides, its applicability on ligand fragments remains to be shown. Structures of fragment–protein complexes are more challenging for the method since fragments contain only few protons. Here we show a successful application of the NMR molecular replacement method in solving structures of complexes between three derivatives of a ligand fragment and the protein receptor PIN1. We anticipate that this approach will find a broad application in fragment-based lead discovery.
- Published
- 2020
- Full Text
- View/download PDF
48. eNORA2 Exact NOE Analysis Program
- Author
-
Strotz, Dean, Orts, Julien, Chi, Celestine N., Riek, Roland, and Vögeli, Beat
- Abstract
We have recently developed an NMR protocol to extract exact distances between nuclei in proteins from an exact interpretation of NOESY buildup intensities (eNOEs). This enabled us to calculate multistate structural ensembles that exhibit realistic spatial sampling and long-range correlations. Our initial studies were laborious and required a deep understanding of the underlying spin dynamics. Here, we present a MatLab package that integrates all data processing steps required to convert intensities of assigned peaks in NOESY series into upper and lower distance limits for structure calculation. Those steps include organization of the data in object format, extraction of autorelaxation and cross-relaxation rate constants by fitting of diagonal peak decays and cross peak buildups, validation of the data, correction for spin diffusion, graphical display of the results, and generation of distance limits in CYANA compatible format. The analysis may be carried out using a full relaxation matrix or a simplified “divide and conquer” approach that allows for partial deuteration of protons. As the program does not require expertise beyond that of standard resonance assignment/structure calculation, it is suitable for experts and nonexperts alike.
- Published
- 2024
- Full Text
- View/download PDF
49. Protein-ligand interactions revealed by liquide state NMR
- Author
-
Orts, Julien and Orts, Julien
- Subjects
pharmacophore ,[PHYS.PHYS.PHYS-BIO-PH] Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,protéine ,interaction ,structure ,protein ,ligand ,[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,NMR ,RMN - Abstract
Un des buts de la recherche pharmaceutique est l'inhibition de protéines avec l'aide de petites molécules (ligands). L'une des phases clefs de ce procédé est la détermination du mode d'interaction entre un ligand et son récepteur. Cette tâche peut être entravée par l'absence de structure du complexe protéine-ligand. C'est pour répondre à ce besoin que nous présentons dans ce travail de thèse, une méthode capable de déterminer la structure de complexes protéine-ligands. Dans la méthode INPHARMA (Inter-ligands Nuclear Overhauser Effect for Pharmacophore Mapping), les inter-ligands NOEs (INPHARMA NOEs) sont utilisés pour déterminer l'orientation relative de deux ligands qui interagissent de manière compétitive avec un même récepteur. Cette nouvelle approche ouvre la voie à des applications pharmaceutiques, également au stade initial du développement, quand l'information structurale via la cristallographie par Rayons X est difficile d'accès.
- Published
- 2010
50. NMR-Based Determination of the 3D Structure of the Ligand–Protein Interaction Site without Protein Resonance Assignment
- Author
-
Orts, Julien, primary, Wälti, Marielle Aulikki, additional, Marsh, May, additional, Vera, Laura, additional, Gossert, Alvar D., additional, Güntert, Peter, additional, and Riek, Roland, additional
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.