1. Distinct stromal and immune cell interactions shape the pathogenesis of rheumatoid and psoriatic arthritis
- Author
-
Achilleas Floudas, Conor M Smith, Orla Tynan, Nuno Neto, Vinod Krishna, Sarah M Wade, Megan Hanlon, Clare Cunningham, Viviana Marzaioli, Mary Canavan, Jean M Fletcher, Ronan H Mullan, Suzanne Cole, Ling-Yang Hao, Michael G Monaghan, Sunil Nagpal, Douglas J Veale, and Ursula Fearon
- Subjects
Rheumatology ,Immunology ,Immunology and Allergy ,General Biochemistry, Genetics and Molecular Biology - Abstract
ObjectivesImmune and stromal cell communication is central in the pathogenesis of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), however, the nature of these interactions in the synovial pathology of the two pathotypes can differ. Identifying immune-stromal cell crosstalk at the site of inflammation in RA and PsA is challenging. This study creates the first global transcriptomic analysis of the RA and PsA inflamed joint and investigates immune-stromal cell interactions in the pathogenesis of synovial inflammation.MethodsSingle cell transcriptomic profiling of 178 000 synovial tissue cells from five patients with PsA and four patients with RA, importantly, without prior sorting of immune and stromal cells. This approach enabled the transcriptomic analysis of the intact synovial tissue and identification of immune and stromal cell interactions. State of the art data integration and annotation techniques identified and characterised 18 stromal and 14 immune cell clusters.ResultsGlobal transcriptomic analysis of synovial cell subsets identifies actively proliferating synovial T cells and indicates that due to differential λ and κ immunoglobulin light chain usage, synovial plasma cells are potentially not derived from the local memory B cell pool. Importantly, we report distinct fibroblast and endothelial cell transcriptomes indicating abundant subpopulations in RA and PsA characterised by differential transcription factor usage. Using receptor–ligand interactions and downstream target characterisation, we identify RA-specific synovial T cell-derived transforming growth factor (TGF)-β and macrophage interleukin (IL)-1β synergy in driving the transcriptional profile of FAPα+THY1+invasive synovial fibroblasts, expanded in RA compared with PsA. In vitro characterisation of patient with RA synovial fibroblasts showed metabolic switch to glycolysis, increased adhesion intercellular adhesion molecules 1 expression and IL-6 secretion in response to combined TGF-β and IL-1β treatment. Disrupting specific immune and stromal cell interactions offers novel opportunities for targeted therapeutic intervention in RA and PsA.
- Published
- 2021