Karine Loulier, Oriol Ros, Sandrine Couvet, Christine Petit, Alice Louail, Yves Mechulam, Delphine Ladarre, Sarah Baudet, Solène Ribes, Alain Aghaie, Zsolt Lenkei, Xavier Nicol, Yvrick Zagar, Institut de la Vision, Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Plasticité du Cerveau Brain Plasticity (UMR 8249) (PdC), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Chaire Génétique et physiologie cellulaire, Collège de France (CdF (institution)), Laboratoire de Biochimie de l'Ecole polytechnique (BIOC), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), This work was supported by grants from Agence Nationale de la Recherche (ANR-15-CE16-0007-01), Retina France, and Sorbonne Université (FCS-SU IDEX SUPER SU-15-R-PERSU-17) to X.N. This work was performed in the frame of the LABEX LIFESENSES (ANR-10-LABX-65) and IHU FOReSIGHT (ANR-18-IAHU-0001), supported by French state funds managed by the Agence Nationale de la Recherche within the Investissements d’Avenir program. A.L. and S.B. were supported by a fellowship from the ED3C doctoral program (Sorbonne Université)., ANR-15-CE16-0007,MessengerCodes,Régulation de la connectivité neuronale par les seconds messagers: décryptage des codes(2015), ANR-10-LABX-0065,LIFESENSES,DES SENS POUR TOUTE LA VIE(2010), ANR-18-IAHU-0001,FOReSIGHT,Enabling Vision Restoration(2018), Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Génétique et physiologie cellulaire, and École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Summary: cGMP is critical to a variety of cellular processes, but the available tools to interfere with endogenous cGMP lack cellular and subcellular specificity. We introduce SponGee, a genetically encoded chelator of this cyclic nucleotide that enables in vitro and in vivo manipulations in single cells and in biochemically defined subcellular compartments. SponGee buffers physiological changes in cGMP concentration in various model systems while not affecting cAMP signals. We provide proof-of-concept strategies by using this tool to highlight the role of cGMP signaling in vivo and in discrete subcellular domains. SponGee enables the investigation of local cGMP signals in vivo and paves the way for therapeutic strategies that prevent downstream signaling activation. : Ros et al. developed SponGee, a genetically encoded cGMP chelator that enables the manipulation of this second messenger in single cells with subcellular specificity. SponGee alters the migration of developing cortical neurons in vivo. Lipid raft targeting of SponGee prevents axon repulsion, in contrast to exclusion from this subcellular compartment. Keywords: cGMP buffer, subcellular compartment, single cell pharmacology, axon guidance, neuronal migration, lipid grafts, genetically encoded, FRET, ThPDE5VV, PKG