32 results on '"Orellana LH"'
Search Results
2. Acidimicrobiia, the actinomycetota of coastal marine sediments: Abundance, taxonomy and genomic potential.
- Author
-
Silva-Solar S, Viver T, Wang Y, Orellana LH, Knittel K, and Amann R
- Abstract
Microbial communities in marine sediments represent some of the densest and most diverse biological communities known, with up to a billion cells and thousands of species per milliliter. Among this taxonomic diversity, the class Acidimicrobiia, within the phylum Actinomycetota, stands out for its consistent presence, yet its limited taxonomic understanding obscures its ecological role. We used metagenome-assembled genomes from a 5-year Arctic fjord sampling campaign and compared them to publicly available Acidimicrobiia genomes using 16S rRNA gene and whole-genome phylogenies, alongside gene prediction and annotation to study their taxonomy and genomic potential. Overall, we provide a taxonomic overview of the class Acidimicrobiia and show its significant prevalence in Isfjorden and Helgoland coastal sediments, representing over 90% of Actinomycetota 16S rRNA gene sequences, and 3-7% of Bacteria. We propose Benthobacter isfjordensis gen. nov., sp. nov., Hadalibacter litoralis gen. nov., sp. nov., and two new species from Ilumatobacter, following SeqCode guidelines. In addition, we report the first in situ quantification of the family Ilumatobacteraceae, revealing its substantial presence (1-6%) in coastal sediments. This work highlights the need of refining the taxonomy of Acidimicrobiia to better understand their ecological contributions., (Copyright © 2024. Published by Elsevier GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
3. Globally occurring pelagiphage infections create ribosome-deprived cells.
- Author
-
Brüwer JD, Sidhu C, Zhao Y, Eich A, Rößler L, Orellana LH, and Fuchs BM
- Subjects
- Phytoplankton virology, Phytoplankton genetics, Phytoplankton metabolism, In Situ Hybridization, Fluorescence, Alphaproteobacteria genetics, Alphaproteobacteria metabolism, Ecosystem, Seawater microbiology, Seawater virology, Oceans and Seas, Ribosomes metabolism, Bacteriophages genetics, Bacteriophages physiology
- Abstract
Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Possible Role of CHAD Proteins in Copper Resistance.
- Author
-
González-Madrid G, Navarro CA, Acevedo-López J, Orellana LH, and Jerez CA
- Abstract
Conserved Histidine Alpha-helical Domain (CHAD) proteins attached to the surface of polyphosphate (PolyP) have been studied in some bacteria and one archaeon. However, the activity of CHAD proteins is unknown beyond their interaction with PolyP granules. By using bioinformatic analysis, we report that several species of the biomining acidophilic bacteria contain orthologs of CHAD proteins with high sequence identity. Furthermore, the gene coding for the CHAD protein is in the same genetic context of the enzyme polyphosphate kinase (PPK), which is in charge of PolyP synthesis. Particularly, the group of ppk and CHAD genes is highly conserved. Metallosphaera sedula and other acidophilic archaea used in biomining also contain CHAD proteins. These archaea show high levels of identity in genes coding for a cluster having the same organization. Amongst these genes are chad and ppx . In general, both biomining bacteria and archaea contain high PolyP levels and are highly resistant to heavy metals. Therefore, the presence of this conserved genetic organization suggests a high relevance for their metabolism. It has been formerly reported that a crystallized CHAD protein contains a copper-binding site. Based on this previous knowledge, in the present report, it was determined that all analyzed CHAD proteins are very conserved at their structural level. In addition, it was found that the lack of YgiF, an Escherichia coli CHAD-containing protein, decreases copper resistance in this bacterium. This phenotype was not only complemented by transforming E. coli with YgiF but also by expressing CHAD from Acidithiobacillus ferrooxidans in it. Interestingly, the strains in which the possible copper-binding sites were mutated were also more metal sensitive. Based on these results, we propose that CHAD proteins are involved in copper resistance in microorganisms. These findings are very interesting and may eventually improve biomining operations in the future.
- Published
- 2024
- Full Text
- View/download PDF
5. Erratum for Brüwer et al., " In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes , and Aurantivirga during phytoplankton blooms reveal differences in population controls".
- Author
-
Brüwer JD, Orellana LH, Sidhu C, Klip HCL, Meunier CL, Boersma M, Wiltshire KH, Amann R, and Fuchs BM
- Published
- 2024
- Full Text
- View/download PDF
6. An ANI gap within bacterial species that advances the definitions of intra-species units.
- Author
-
Rodriguez-R LM, Conrad RE, Viver T, Feistel DJ, Lindner BG, Venter SN, Orellana LH, Amann R, Rossello-Mora R, and Konstantinidis KT
- Subjects
- Prokaryotic Cells, Phylogeny, Sequence Analysis, DNA, Genome, Bacterial, Bacteria genetics
- Abstract
Importance: Bacterial strains and clonal complexes are two cornerstone concepts for microbiology that remain loosely defined, which confuses communication and research. Here we identify a natural gap in genome sequence comparisons among isolate genomes of all well-sequenced species that has gone unnoticed so far and could be used to more accurately and precisely define these and related concepts compared to current methods. These findings advance the molecular toolbox for accurately delineating and following the important units of diversity within prokaryotic species and thus should greatly facilitate future epidemiological and micro-diversity studies across clinical and environmental settings., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
7. Taxonomic and functional stability overrules seasonality in polar benthic microbiomes.
- Author
-
Miksch S, Orellana LH, Oggerin de Orube M, Vidal-Melgosa S, Solanki V, Hehemann JH, Amann R, and Knittel K
- Subjects
- RNA, Ribosomal, 16S genetics, Bacteria genetics, Glucose, Geologic Sediments microbiology, Seawater microbiology, Microbiota
- Abstract
Coastal shelf sediments are hot spots of organic matter mineralization. They receive up to 50% of primary production, which, in higher latitudes, is strongly seasonal. Polar and temperate benthic bacterial communities, however, show a stable composition based on comparative 16S rRNA gene sequencing despite different microbial activity levels. Here, we aimed to resolve this contradiction by identifying seasonal changes at the functional level, in particular with respect to algal polysaccharide degradation genes, by combining metagenomics, metatranscriptomics, and glycan analysis in sandy surface sediments from Isfjorden, Svalbard. Gene expressions of diverse carbohydrate-active enzymes changed between winter and spring. For example, β-1,3-glucosidases (e.g. GH30, GH17, GH16) degrading laminarin, an energy storage molecule of algae, were elevated in spring, while enzymes related to α-glucan degradation were expressed in both seasons with maxima in winter (e.g. GH63, GH13_18, and GH15). Also, the expression of GH23 involved in peptidoglycan degradation was prevalent, which is in line with recycling of bacterial biomass. Sugar extractions from bulk sediments were low in concentrations during winter but higher in spring samples, with glucose constituting the largest fraction of measured monosaccharides (84% ± 14%). In porewater, glycan concentrations were ~18-fold higher than in overlying seawater (1107 ± 484 vs. 62 ± 101 μg C l-1) and were depleted in glucose. Our data indicate that microbial communities in sandy sediments digest and transform labile parts of photosynthesis-derived particulate organic matter and likely release more stable, glucose-depleted residual glycans of unknown structures, quantities, and residence times into the ocean, thus modulating the glycan composition of marine coastal waters., (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)
- Published
- 2024
- Full Text
- View/download PDF
8. Niche differentiation within bacterial key-taxa in stratified surface waters of the Southern Pacific Gyre.
- Author
-
Oggerin M, Viver T, Brüwer J, Voß D, García-Llorca M, Zielinski O, Orellana LH, and Fuchs BM
- Subjects
- Pacific Ocean, Alphaproteobacteria genetics, Alphaproteobacteria metabolism, Alphaproteobacteria classification, Alphaproteobacteria isolation & purification, Metagenomics, In Situ Hybridization, Fluorescence, Ecosystem, Phylogeny, Microbiota, Seawater microbiology
- Abstract
One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas). The high frequency of dividing cells combined with high transcript levels suggests that both clades may be highly metabolically active. Comparative metagenomic and metatranscriptomic analyses of AEGEAN169 revealed that they encoded subtle but distinct metabolic adaptions to this extreme environment in comparison to their competitors SAR11, SAR86, SAR116, and Prochlorococcus. Both AEGEAN169 clades had the highest percentage of transporters per predicted proteins (9.5% and 10.6%, respectively). In particular, the high expression of ABC transporters in combination with proteorhodopsins and the catabolic pathways detected suggest a potential scavenging lifestyle for both AEGEAN169 clades. Although both AEGEAN169 clades may share the genomic potential to utilize phosphonates as a phosphorus source, they differ in their metabolic pathways for carbon and nitrogen. Ca. Nemonibacter potentially use glycine-betaine, whereas Ca. Indicimonas may catabolize urea, creatine, and fucose. In conclusion, the different potential metabolic strategies of both clades suggest that both are well adapted to thrive resource-limited conditions and compete well with other dominant microbial clades in the uppermost layers of SPG surface waters., (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)
- Published
- 2024
- Full Text
- View/download PDF
9. Diversity, Taxonomic Novelty, and Encoded Functions of Salar de Ascotán Microbiota, as Revealed by Metagenome-Assembled Genomes.
- Author
-
Veloso M, Waldisperg A, Arros P, Berríos-Pastén C, Acosta J, Colque H, Varas MA, Allende ML, Orellana LH, and Marcoleta AE
- Abstract
Salar de Ascotán is a high-altitude arsenic-rich salt flat exposed to high ultraviolet radiation in the Atacama Desert, Chile. It hosts unique endemic flora and fauna and is an essential habitat for migratory birds, making it an important site for conservation and protection. However, there is limited information on the resident microbiota's diversity, genomic features, metabolic potential, and molecular mechanisms that enable it to thrive in this extreme environment. We used long- and short-read metagenomics to investigate the microbial communities in Ascotán's water, sediment, and soil. Bacteria predominated, mainly Pseudomonadota , Acidobacteriota , and Bacteroidota , with a remarkable diversity of archaea in the soil. Following hybrid assembly, we recovered high-quality bacterial (101) and archaeal (6) metagenome-assembled genomes (MAGs), including representatives of two putative novel families of Patescibacteria and Pseudomonadota and two novel orders from the archaeal classes Halobacteriota and Thermoplasmata . We found different metabolic capabilities across distinct lineages and a widespread presence of genes related to stress response, DNA repair, and resistance to arsenic and other metals. These results highlight the remarkable diversity and taxonomic novelty of the Salar de Ascotán microbiota and its rich functional repertoire, making it able to resist different harsh conditions. The highly complete MAGs described here could serve future studies and bioprospection efforts focused on salt flat extremophiles, and contribute to enriching databases with microbial genome data from underrepresented regions of our planet.
- Published
- 2023
- Full Text
- View/download PDF
10. In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes , and Aurantivirga during phytoplankton blooms reveal differences in population controls.
- Author
-
Brüwer JD, Orellana LH, Sidhu C, Klip HCL, Meunier CL, Boersma M, Wiltshire KH, Amann R, and Fuchs BM
- Subjects
- RNA, Ribosomal, 16S genetics, In Situ Hybridization, Fluorescence, Population Control, Seawater microbiology, Bacteria, Cell Division, Bacteroidetes genetics, Phytoplankton genetics
- Abstract
Net growth of microbial populations, that is, changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, and the copiotrophic phylum Bacteroidetes , and its genus Aurantivirga . Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8/day and Aurantivirga of up to 1.9/day differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9/day, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5/day) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within 1 day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls. IMPORTANCE The growth of a microbial population is often calculated from their numerical abundance over time. However, this does not take cell division and mortality rates into account, which are important for deriving ecological processes like bottom-up and top-down control. In this study, we determined growth by numerical abundance and calibrated microscopy-based methods to determine the frequency of dividing cells and subsequently calculate taxon-specific cell division rates in situ . The cell division and mortality rates of two oligotrophic (SAR11 and SAR86) and two copiotrophic ( Bacteroidetes and Aurantivirga ) taxa during two spring phytoplankton blooms showed a tight coupling for all four taxa throughout the blooms without any temporal offset. Unexpectedly, SAR11 showed high cell division rates days before the bloom while cell abundances remained constant, which is indicative of strong top-down control. Microscopy remains the method of choice to understand ecological processes like top-down and bottom-up control on a cellular level., Competing Interests: The authors declare no conflict of interest.
- Published
- 2023
- Full Text
- View/download PDF
11. Comparing genomes recovered from time-series metagenomes using long- and short-read sequencing technologies.
- Author
-
Orellana LH, Krüger K, Sidhu C, and Amann R
- Subjects
- RNA, Ribosomal, 16S genetics, Technology, Metagenomics methods, Metagenome genetics, High-Throughput Nucleotide Sequencing methods
- Abstract
Background: Over the past years, sequencing technologies have expanded our ability to examine novel microbial metabolisms and diversity previously obscured by isolation approaches. Long-read sequencing promises to revolutionize the metagenomic field and recover less fragmented genomes from environmental samples. Nonetheless, how to best benefit from long-read sequencing and whether long-read sequencing can provide recovered genomes of similar characteristics as short-read approaches remains unclear., Results: We recovered metagenome-assembled genomes (MAGs) from the free-living fraction at four-time points during a spring bloom in the North Sea. The taxonomic composition of all MAGs recovered was comparable between technologies. However, differences consisted of higher sequencing depth for contigs and higher genome population diversity in short-read compared to long-read metagenomes. When pairing population genomes recovered from both sequencing approaches that shared ≥ 99% average nucleotide identity, long-read MAGs were composed of fewer contigs, a higher N50, and a higher number of predicted genes when compared to short-read MAGs. Moreover, 88% of the total long-read MAGs carried a 16S rRNA gene compared to only 23% of MAGs recovered from short-read metagenomes. Relative abundances for population genomes recovered using both technologies were similar, although disagreements were observed for high and low GC content MAGs., Conclusions: Our results highlight that short-read technologies recovered more MAGs and a higher number of species than long-read due to an overall higher sequencing depth. Long-read samples produced higher quality MAGs and similar species composition compared to short-read sequencing. Differences in the GC content recovered by each sequencing technology resulted in divergences in the diversity recovered and relative abundance of MAGs within the GC content boundaries., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
12. ROCker Models for Reliable Detection and Typing of Short-Read Sequences Carrying β-Lactamase Genes.
- Author
-
Zhang SY, Suttner B, Rodriguez-R LM, Orellana LH, Conrad RE, Liu F, Rowell JL, Webb HE, Williams-Newkirk AJ, Huang A, and Konstantinidis KT
- Subjects
- Humans, Phylogeny, beta-Lactams, Drug Resistance, Microbial, beta-Lactamases genetics, Anti-Bacterial Agents pharmacology
- Abstract
Identification of genes encoding β-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 × precision × recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding β-lactamases (BLs) confer resistance to the widely prescribed antibiotic class β-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings.
- Published
- 2022
- Full Text
- View/download PDF
13. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms.
- Author
-
Orellana LH, Francis TB, Ferraro M, Hehemann JH, Fuchs BM, and Amann RI
- Subjects
- Eutrophication, Pentoses metabolism, Phytoplankton metabolism, Proteomics, Seawater microbiology, Sulfates metabolism, Verrucomicrobia, Diatoms metabolism
- Abstract
Marine algae annually sequester petagrams of carbon dioxide into polysaccharides, which are a central metabolic fuel for marine carbon cycling. Diatom microalgae produce sulfated polysaccharides containing methyl pentoses that are challenging to degrade for bacteria compared to other monomers, implicating these sugars as a potential carbon sink. Free-living bacteria occurring in phytoplankton blooms that specialise on consuming microalgal sugars, containing fucose and rhamnose remain unknown. Here, genomic and proteomic data indicate that small, coccoid, free-living Verrucomicrobiota specialise in fucose and rhamnose consumption during spring algal blooms in the North Sea. Verrucomicrobiota cell abundance was coupled with the algae bloom onset and accounted for up to 8% of the bacterioplankton. Glycoside hydrolases, sulfatases, and bacterial microcompartments, critical proteins for the consumption of fucosylated and sulfated polysaccharides, were actively expressed during consecutive spring bloom events. These specialised pathways were assigned to novel and discrete candidate species of the Akkermansiaceae and Puniceicoccaceae families, which we here describe as Candidatus Mariakkermansia forsetii and Candidatus Fucivorax forsetii. Moreover, our results suggest specialised metabolic pathways could determine the fate of complex polysaccharides consumed during algae blooms. Thus the sequestration of phytoplankton organic matter via methyl pentose sugars likely depend on the activity of specialised Verrucomicrobiota populations., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. The influence of alfalfa-switchgrass intercropping on microbial community structure and function.
- Author
-
Cha G, Meinhardt KA, Orellana LH, Hatt JK, Pannu MW, Stahl DA, and Konstantinidis KT
- Subjects
- Agriculture methods, Fertilizers analysis, Medicago sativa microbiology, Nitrogen analysis, Soil chemistry, Soil Microbiology, Microbiota genetics, Mycorrhizae chemistry, Panicum microbiology
- Abstract
The use of nitrogen fertilizer on bioenergy crops such as switchgrass results in increased costs, nitrogen leaching and emissions of N
2 O, a potent greenhouse gas. Intercropping with nitrogen-fixing alfalfa has been proposed as an environmentally sustainable alternative, but the effects of synthetic fertilizer versus intercropping on soil microbial community functionality remain uncharacterized. We analysed 24 metagenomes from the upper soil layer of agricultural fields from Prosser, WA over two growing seasons and representing three agricultural practices: unfertilized switchgrass (control), fertilized switchgrass and switchgrass intercropped with alfalfa. The synthetic fertilization and intercropping did not result in major shifts of microbial community taxonomic and functional composition compared with the control plots, but a few significant changes were noted. Most notably, mycorrhizal fungi, ammonia-oxidizing archaea and bacteria increased in abundance with intercropping and fertilization. However, only betaproteobacterial ammonia-oxidizing bacteria abundance in fertilized plots significantly correlated to N2 O emission and companion qPCR data. Collectively, a short period of intercropping elicits minor but significant changes in the soil microbial community toward nitrogen preservation and that intercropping may be a viable alternative to synthetic fertilization., (© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.)- Published
- 2021
- Full Text
- View/download PDF
15. Transcriptomic and rRNA:rDNA Signatures of Environmental versus Enteric Enterococcus faecalis Isolates under Oligotrophic Freshwater Conditions.
- Author
-
Suttner B, Kim M, Johnston ER, Orellana LH, Ruiz-Perez CA, Rodriguez-R LM, Hatt JK, Brown J, Santo Domingo JW, and Konstantinidis KT
- Subjects
- Computational Biology methods, Enterococcus faecalis isolation & purification, Environmental Monitoring, Feces microbiology, Fresh Water microbiology, Gene Dosage genetics, Humans, Intestines microbiology, Transcriptome genetics, Water Microbiology, Water Quality, Adaptation, Physiological physiology, DNA, Ribosomal genetics, Enterococcus faecalis genetics, Gastrointestinal Microbiome genetics, RNA, Ribosomal, 16S genetics
- Abstract
The use of enterococci as a fecal indicator bacterial group for public health risk assessment has been brought into question by recent studies showing that "naturalized" populations of Enterococcus faecalis exist in the extraenteric environment. The extent to which these naturalized E. faecalis organisms can confound water quality monitoring is unclear. To determine if strains isolated from different habitats display different survival strategies and responses, we compared the decay patterns of three E. faecalis isolates from the natural environment (environmental strains) against three human gut isolates (enteric strains) in laboratory mesocosms that simulate an oligotrophic, aerobic freshwater environment. Our results showed similar overall decay rates between enteric and environmental isolates based on viable plate and quantitative PCR (qPCR) counts. However, the enteric isolates exhibited a spike in copy number ratios of 16S rRNA gene transcripts to 16S rRNA gene DNA copies (rRNA:rDNA ratios) between days 1 and 3 of the mesocosm incubations that was not observed in environmental isolates, which could indicate a different stress response. Nevertheless, there was no strong evidence of differential gene expression between environmental and enteric isolates related to habitat adaptation in the accompanying mesocosm metatranscriptomes. Overall, our results provide novel information on how rRNA levels may vary over different growth conditions (e.g., standard lab versus oligotrophic) for this important indicator bacteria. We also observed some evidence for habitat adaptation in E. faecalis; however, this adaptation may not be substantial or consistent enough for integration in water quality monitoring. IMPORTANCE Enterococci are commonly used worldwide to monitor environmental fecal contamination and public health risk for waterborne diseases. However, closely related enterococci strains adapted to living in the extraenteric environment may represent a lower public health risk and confound water quality estimates. We developed an rRNA:rDNA viability assay for E. faecalis (a predominant species within this fecal group) and tested it against both enteric and environmental isolates in freshwater mesocosms to assess whether this approach can serve as a more sensitive water quality monitoring tool. We were unable to reliably distinguish the different isolate types using this assay under the conditions tested; thus, environmental strains should continue to be counted during routine water monitoring. However, this assay could be useful for distinguishing more recent (i.e., higher-risk) fecal pollution because rRNA levels significantly decreased after 1 week in all isolates.
- Published
- 2021
- Full Text
- View/download PDF
16. Diversity of microbial communities and genes involved in nitrous oxide emissions in Antarctic soils impacted by marine animals as revealed by metagenomics and 100 metagenome-assembled genomes.
- Author
-
Ramírez-Fernández L, Orellana LH, Johnston ER, Konstantinidis KT, and Orlando J
- Subjects
- Animals, Antarctic Regions, Metagenomics, Nitrous Oxide, RNA, Ribosomal, 16S, Soil, Soil Microbiology, Metagenome, Microbiota
- Abstract
Antarctic soils generally have low temperatures and limited availability of liquid water and nutrients. However, animals can increase the nutrient availability of ice-free areas by transferring nutrients from marine to terrestrial ecosystems, mainly through their excreta. In this study, we employed shotgun metagenomics and population genome binning techniques to study the diversity of microbial communities in Antarctic soils impacted by marine pinnipeds and birds relative to soils with no evident animal presence. We obtained ~285,000 16S rRNA gene-carrying metagenomic reads representing ~60 phyla and 100 metagenome-assembled genomes (MAGs) representing eight phyla. Only nine of these 100 MAGs represented previously described species, revealing that these soils harbor extensive novel diversity. Proteobacteria, Actinobacteria, and Bacteroidetes were the most abundant phyla in all samples, with Rhodanobacter being one of the most abundant genera in the bird-impacted soils. Further, the relative abundance of genes related to denitrification was at least double in soils impacted by birds than soils without animal influence. These results advance our understanding of the microbial populations and their genes involved in nitrous oxide emissions in ice-free coastal Antarctic soils impacted by marine animals and reveal novel microbial diversity associated with these ecosystems., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
17. Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms.
- Author
-
Priest T, Orellana LH, Huettel B, Fuchs BM, and Amann R
- Abstract
The impacts of climate change on the Arctic Ocean are manifesting throughout the ecosystem at an unprecedented rate. Of global importance are the impacts on heat and freshwater exchange between the Arctic and North Atlantic Oceans. An expanding Atlantic influence in the Arctic has accelerated sea-ice decline, weakened water column stability and supported the northward shift of temperate species. The only deep-water gateway connecting the Arctic and North Atlantic and thus, fundamental for these exchange processes is the Fram Strait. Previous research in this region is extensive, however, data on the ecology of microbial communities is limited, reflecting the wider bias towards temperate and tropical latitudes. Therefore, we present 14 metagenomes, 11 short-read from Illumina and three long-read from PacBio Sequel II, of the 0.2-3 µm fraction to help alleviate such biases and support future analyses on changing ecological patterns. Additionally, we provide 136 species-representative, manually refined metagenome-assembled genomes which can be used for comparative genomics analyses and addressing questions regarding functionality or distribution of taxa., Competing Interests: The authors declare there are no competing interests., (©2021 Priest et al.)
- Published
- 2021
- Full Text
- View/download PDF
18. Metagenomic Characterization of Soil Microbial Communities in the Luquillo Experimental Forest (Puerto Rico) and Implications for Nitrogen Cycling.
- Author
-
Karthikeyan S, Orellana LH, Johnston ER, Hatt JK, Löffler FE, Ayala-Del-Río HL, González G, and Konstantinidis KT
- Subjects
- Metagenomics, Puerto Rico, RNA, Ribosomal, 16S, Metagenome, Nitrogen Cycle, Rainforest, Soil Microbiology
- Abstract
The phylogenetic and functional diversities of microbial communities in tropical rainforests and how these differ from those of temperate communities remain poorly described but are directly related to the increased fluxes of greenhouse gases such as nitrous oxide (N
2 O) from the tropics. Toward closing these knowledge gaps, we analyzed replicated shotgun metagenomes representing distinct life zones and an elevation gradient from four locations in the Luquillo Experimental Forest (LEF), Puerto Rico. These soils had a distinct microbial community composition and lower species diversity compared to those of temperate grasslands or agricultural soils. In contrast to the overall distinct community composition, the relative abundances and nucleotide sequences of N2 O reductases ( nosZ ) were highly similar between tropical forest and temperate soils. However, respiratory NO reductase ( norB ) was 2-fold more abundant in the tropical soils, which might be relatable to their greater N2 O emissions. Nitrogen fixation ( nifH ) also showed higher relative abundance in rainforest than in temperate soils, i.e., 20% versus 0.1 to 0.3% of bacterial genomes in each soil type harbored the gene, respectively. Finally, unlike temperate soils, LEF soils showed little stratification with depth in the first 0 to 30 cm, with ∼45% of community composition differences explained solely by location. Collectively, these results advance our understanding of spatial diversity and metabolic repertoire of tropical rainforest soil communities and should facilitate future ecological studies of these ecosystems. IMPORTANCE Tropical rainforests are the largest terrestrial sinks of atmospheric CO2 and the largest natural source of N2 O emissions, two greenhouse gases that are critical for the climate. The microbial communities of rainforest soils that directly or indirectly, through affecting plant growth, contribute to these fluxes remain poorly described by cultured-independent methods. To close this knowledge gap, the present study applied shotgun metagenomics to samples selected from three distinct life zones within the Puerto Rico rainforest. The results advance our understanding of microbial community diversity in rainforest soils and should facilitate future studies of natural or manipulated perturbations of these critical ecosystems.- Published
- 2021
- Full Text
- View/download PDF
19. Distinct ecotypes within a natural haloarchaeal population enable adaptation to changing environmental conditions without causing population sweeps.
- Author
-
Viver T, Conrad RE, Orellana LH, Urdiain M, González-Pastor JE, Hatt JK, Amann R, Antón J, Konstantinidis KT, and Rosselló-Móra R
- Subjects
- Adaptation, Physiological, Metagenome, Salinity, Ecotype, Microbiota
- Abstract
Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences. The dominant ecotype was generally more abundant and occurred in high-salt conditions (34%); the low abundance ecotype always co-occurred but was enriched at salinities around 20% or lower and carried unique gene content related to solute transport and gene regulation. Despite their apparent distinct ecological preferences, the ecotypes did not outcompete each other presumably due to weak functional differentiation between them. Further, the osmotic shock selected for a temporal increase in taxonomic and functional diversity at both the Hqr. walsbyi population and whole-community levels supporting the specialization-disturbance hypothesis, that is, the expectation that disturbance favors generalists. Altogether, our results provide new insights into how intraspecies diversity is maintained in light of substantial gene-content differences and major environmental perturbations.
- Published
- 2021
- Full Text
- View/download PDF
20. Candidatus Abditibacter, a novel genus within the Cryomorphaceae, thriving in the North Sea.
- Author
-
Grieb A, Francis TB, Krüger K, Orellana LH, Amann R, and Fuchs BM
- Subjects
- Bacterial Proteins genetics, Bacteroidetes cytology, Bacteroidetes genetics, Eutrophication, Genome, Bacterial genetics, In Situ Hybridization, Fluorescence, Metagenome, North Sea, Phylogeny, Phytoplankton cytology, Phytoplankton genetics, RNA, Ribosomal, 16S genetics, Seasons, Sequence Analysis, DNA, Species Specificity, Bacteroidetes classification, Bacteroidetes growth & development, Phytoplankton classification, Phytoplankton growth & development, Seawater microbiology
- Abstract
Coastal phytoplankton blooms are frequently followed by successive blooms of heterotrophic bacterial clades. The class Flavobacteriia within the Bacteroidetes has been shown to play an important role in the degradation of high molecular weight substrates that become available in the later stages of such blooms. One of the flavobacterial clades repeatedly observed over the course of several years during phytoplankton blooms off the coast of Helgoland, North Sea, is Vis6. This genus-level clade belongs to the family Cryomorphaceae and has been resistant to cultivation to date. Based on metagenome assembled genomes, comparative 16S rRNA gene sequence analyses and fluorescence in situ hybridization, we here propose a novel candidate genus Abditibacter, comprising three novel species Candidatus Abditibacter vernus, Candidatus Abditibacter forsetii and Candidatus Abditibacter autumni. While the small genomes of the three novel photoheterotrophic species encode highly similar gene repertoires, including genes for degradation of proteins and algal storage polysaccharides such as laminarin, two of them - Ca. A. vernus and Ca. A. forsetii - seem to have a preference for spring blooms, while Ca. A. autumni almost exclusively occurs in late summer and autumn., (Copyright © 2020 The Author(s). Published by Elsevier GmbH.. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
21. Metagenomics as a Public Health Risk Assessment Tool in a Study of Natural Creek Sediments Influenced by Agricultural and Livestock Runoff: Potential and Limitations.
- Author
-
Suttner B, Johnston ER, Orellana LH, Rodriguez-R LM, Hatt JK, Carychao D, Carter MQ, Cooley MB, and Konstantinidis KT
- Subjects
- Agriculture, Animal Husbandry, Animals, California, Livestock, Rivers microbiology, Water Pollution, Geologic Sediments microbiology, Metagenomics, Public Health methods, Risk Assessment methods, Shiga-Toxigenic Escherichia coli isolation & purification
- Abstract
Little is known about the public health risks associated with natural creek sediments that are affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the persistence of foodborne pathogens such as Shiga toxin-producing Escherichia coli (STEC) originating from these practices remains poorly quantified. Towards closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley of California was sampled over a 9-month period using metagenomics and traditional culture-based tests for STEC. Our results revealed that these sediment communities are extremely diverse and have functional and taxonomic diversity comparable to that observed in soils. With our sequencing effort (∼4 Gbp per library), we were unable to detect any pathogenic E. coli in the metagenomes of 11 samples that had tested positive using culture-based methods, apparently due to relatively low abundance. Furthermore, there were no significant differences in the abundance of human- or cow-specific gut microbiome sequences in the downstream impacted sites compared to that in upstream more pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, the high number of metagenomic reads carrying antibiotic resistance genes (ARGs) found in all samples was significantly higher than ARG reads in other available freshwater and soil metagenomes, suggesting that these communities may be natural reservoirs of ARGs. The work presented here should serve as a guide for sampling volumes, amount of sequencing to apply, and what bioinformatics analyses to perform when using metagenomics for public health risk studies of environmental samples such as sediments. IMPORTANCE Current agricultural and livestock practices contribute to fecal contamination in the environment and the spread of food- and waterborne disease and antibiotic resistance genes (ARGs). Traditionally, the level of pollution and risk to public health are assessed by culture-based tests for the intestinal bacterium Escherichia coli However, the accuracy of these traditional methods (e.g., low accuracy in quantification, and false-positive signal when PCR based) and their suitability for sediments remain unclear. We collected sediments for a time series metagenomics study from one of the most highly productive agricultural regions in the United States in order to assess how agricultural runoff affects the native microbial communities and if the presence of Shiga toxin-producing Escherichia coli (STEC) in sediment samples can be detected directly by sequencing. Our study provided important information on the potential for using metagenomics as a tool for assessment of public health risk in natural environments., (Copyright © 2020 American Society for Microbiology.)
- Published
- 2020
- Full Text
- View/download PDF
22. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota.
- Author
-
Orellana LH, Ben Francis T, Krüger K, Teeling H, Müller MC, Fuchs BM, Konstantinidis KT, and Amann RI
- Subjects
- Euryarchaeota classification, Euryarchaeota genetics, Euryarchaeota isolation & purification, Genomics, Metagenome, North Sea, Phylogeny, Rhodopsins, Microbial genetics, Rhodopsins, Microbial metabolism, Euryarchaeota cytology, Seawater microbiology
- Abstract
Since the discovery of archaeoplankton in 1992, the euryarchaeotal Marine Group II (MGII) remains uncultured and less understood than other planktonic archaea. We characterized the seasonal dynamics of MGII populations in the southern North Sea on a genomic and microscopic level over the course of four years. We recovered 34 metagenome-assembled genomes (MAGs) of MGIIa and MGIIb that corroborated proteorhodopsin-based photoheterotrophic lifestyles. However, MGIIa and MGIIb MAG genome sizes differed considerably (~1.9 vs. ~1.4 Mbp), as did their transporter, peptidase, flagella and sulfate assimilation gene repertoires. MGIIb populations were characteristic of winter samples, whereas MGIIa accounted for up to 23% of the community at the beginning of summer. Both clades consisted of annually recurring, sequence-discrete populations with low intra-population sequence diversity. Oligotyping of filtered cell-size fractions and microscopy consistently suggested that MGII cells were predominantly free-living. Cells were coccoid and ~0.7 µm in diameter, likely resulting in grazing avoidance. Based on multiple lines of evidence, we propose distinct niche adaptations of MGIIa and MGIIb Euryarchaeota populations that are characteristic of summer and winter conditions in the coastal North Sea.
- Published
- 2019
- Full Text
- View/download PDF
23. Comparing DNA, RNA and protein levels for measuring microbial dynamics in soil microcosms amended with nitrogen fertilizer.
- Author
-
Orellana LH, Hatt JK, Iyer R, Chourey K, Hettich RL, Spain JC, Yang WH, Chee-Sanford JC, Sanford RA, Löffler FE, and Konstantinidis KT
- Subjects
- Archaea drug effects, Archaea genetics, Archaea isolation & purification, Bacteria drug effects, Bacteria genetics, Bacteria isolation & purification, Gene Expression Regulation, Archaeal drug effects, Gene Expression Regulation, Bacterial drug effects, Gene Ontology, Metagenomics, Nitrates analysis, Nitrogen Isotopes analysis, Oxidation-Reduction, Phylogeny, Proteomics, RNA, Ribosomal, 16S analysis, Soil chemistry, Ammonium Compounds pharmacology, Archaeal Proteins analysis, Bacterial Proteins analysis, DNA, Archaeal analysis, DNA, Bacterial analysis, Fertilizers, Microbiota drug effects, Nitrification genetics, RNA, Archaeal analysis, RNA, Bacterial analysis, Soil Microbiology, Urea pharmacology
- Abstract
To what extent multi-omic techniques could reflect in situ microbial process rates remains unclear, especially for highly diverse habitats like soils. Here, we performed microcosm incubations using sandy soil from an agricultural site in Midwest USA. Microcosms amended with isotopically labeled ammonium and urea to simulate a fertilization event showed nitrification (up to 4.1 ± 0.87 µg N-NO
3 - g-1 dry soil d-1 ) and accumulation of N2 O after 192 hours of incubation. Nitrification activity (NH4 + → NH2 OH → NO → NO2 - → NO3 - ) was accompanied by a 6-fold increase in relative expression of the 16S rRNA gene (RNA/DNA) between 10 and 192 hours of incubation for ammonia-oxidizing bacteria Nitrosomonas and Nitrosospira, unlike archaea and comammox bacteria, which showed stable gene expression. A strong relationship between nitrification activity and betaproteobacterial ammonia monooxygenase and nitrite oxidoreductase transcript abundances revealed that mRNA quantitatively reflected measured activity and was generally more sensitive than DNA under these conditions. Although peptides related to housekeeping proteins from nitrite-oxidizing microorganisms were detected, their abundance was not significantly correlated with activity, revealing that meta-proteomics provided only a qualitative assessment of activity. Altogether, these findings underscore the strengths and limitations of multi-omic approaches for assessing diverse microbial communities in soils and provide new insights into nitrification.- Published
- 2019
- Full Text
- View/download PDF
24. Predominance of deterministic microbial community dynamics in salterns exposed to different light intensities.
- Author
-
Viver T, Orellana LH, Díaz S, Urdiain M, Ramos-Barbero MD, González-Pastor JE, Oren A, Hatt JK, Amann R, Antón J, Konstantinidis KT, and Rosselló-Móra R
- Subjects
- Bacteria genetics, Bacteria radiation effects, Metagenome, Photosynthesis, Salinity, Stochastic Processes, Light, Microbiota radiation effects
- Abstract
While the dynamics of microbial community assembly driven by environmental perturbations have been extensively studied, our understanding is far from complete, particularly for light-induced perturbations. Extremely halophilic communities thriving in coastal solar salterns are mainly influenced by two environmental factors-salt concentrations and high sunlight irradiation. By experimentally manipulating light intensity through the application of shading, we showed that light acts as a deterministic factor that ultimately drives the establishment of recurrent microbial communities under near-saturation salt concentrations. In particular, the stable and highly change-resistant communities that established under high-light intensities were dominated (>90% of metagenomic reads) by Haloquadratum spp. and Salinibacter spp. On the other hand, under 37-fold lower light intensity, different, less stable and change-resistant communities were established, mainly dominated by yet unclassified haloarchaea and relatively diverse photosynthetic microorganisms. These communities harboured, in general, much lower carotenoid pigment content than their high-irradiation counterparts. Both assemblage types appeared to be highly resilient, re-establishing when favourable conditions returned after perturbation (i.e. high-irradiation for the former communities and low-irradiation for the latter ones). Overall, our results revealed that stochastic processes were of limited significance to explain these patterns., (© 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
25. Effects of timber harvesting on the genetic potential for carbon and nitrogen cycling in five North American forest ecozones.
- Author
-
Cardenas E, Orellana LH, Konstantinidis KT, and Mohn WW
- Subjects
- Biomass, Carbon Cycle, Forests, Nitrogen Cycle, Trees
- Abstract
Forest ecosystems are critical to global biogeochemical cycles but under pressure from harvesting and climate change. We investigated the effects of organic matter (OM) removal during forest harvesting on the genetic potential of soil communities for biomass decomposition and nitrogen cycling in five ecozones across North America. We analyzed 107 samples, representing four treatments with varied levels of OM removal, at Long-Term Soil Productivity Study sites. Samples were collected more than ten years after harvesting and replanting and were analyzed via shotgun metagenomics. High-quality short reads totaling 1.2 Tbp were compared to the Carbohydrate Active Enzyme (CAZy) database and a custom database of nitrogen cycle genes. Gene profile variation was mostly explained by ecozone and soil layer. Eleven CAZy and nine nitrogen cycle gene families were associated with particular soil layers across all ecozones. Treatment effects on gene profiles were mainly due to harvesting, and only rarely to the extent of OM removal. Harvesting generally decreased the relative abundance of CAZy genes while increasing that of nitrogen cycle genes, although these effects varied among ecozones. Our results suggest that ecozone-specific nutrient availability modulates the sensitivity of the carbon and nitrogen cycles to harvesting with possible consequences for long-term forest sustainability.
- Published
- 2018
- Full Text
- View/download PDF
26. Year-Round Shotgun Metagenomes Reveal Stable Microbial Communities in Agricultural Soils and Novel Ammonia Oxidizers Responding to Fertilization.
- Author
-
Orellana LH, Chee-Sanford JC, Sanford RA, Löffler FE, and Konstantinidis KT
- Subjects
- Agriculture, Ammonia metabolism, Archaea classification, Archaea metabolism, Bacteria classification, Bacteria metabolism, Illinois, Oxidation-Reduction, Archaea isolation & purification, Bacteria isolation & purification, Fertilizers, Metagenome, Microbiota, Soil Microbiology
- Abstract
The dynamics of individual microbial populations and their gene functions in agricultural soils, especially after major activities such as nitrogen (N) fertilization, remain elusive but are important for a better understanding of nutrient cycling. Here, we analyzed 20 short-read metagenomes collected at four time points during 1 year from two depths (0 to 5 and 20 to 30 cm) in two Midwestern agricultural sites representing contrasting soil textures (sandy versus silty loam) with similar cropping histories. Although the microbial community taxonomic and functional compositions differed between the two locations and depths, they were more stable within a depth/site throughout the year than communities in natural aquatic ecosystems. For example, among the 69 population genomes assembled from the metagenomes, 75% showed a less than 2-fold change in abundance between any two sampling points. Interestingly, six deep-branching Thaumarchaeota and three complete ammonia oxidizer (comammox) Nitrospira populations increased up to 5-fold in abundance upon the addition of N fertilizer. These results indicated that indigenous archaeal ammonia oxidizers may respond faster (are more copiotrophic) to N fertilization than previously thought. None of 29 recovered putative denitrifier genomes encoded the complete denitrification pathway, suggesting that denitrification is carried out by a collection of different populations. Altogether, our study identified novel microbial populations and genes responding to seasonal and human-induced perturbations in agricultural soils that should facilitate future monitoring efforts and N-related studies. IMPORTANCE Even though the impact of agricultural management on the microbial community structure has been recognized, an understanding of the dynamics of individual microbial populations and what functions each population carries are limited. Yet, this information is important for a better understanding of nutrient cycling, with potentially important implications for preserving nitrogen in soils and sustainability. Here, we show that reconstructed metagenome-assembled genomes (MAGs) are relatively stable in their abundance and functional gene content year round, and seasonal nitrogen fertilization has selected for novel Thaumarchaeota and comammox Nitrospira nitrifiers that are potentially less oligotrophic than their marine counterparts previously studied., (Copyright © 2018 American Society for Microbiology.)
- Published
- 2018
- Full Text
- View/download PDF
27. The low diverse gastric microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa.
- Author
-
Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S, Richter M, Antón J, Avian M, Amann R, Konstantinidis KT, and Rosselló-Móra R
- Subjects
- Animals, Biodiversity, Chlamydia genetics, Chlamydia isolation & purification, Female, Gastrointestinal Microbiome, In Situ Hybridization, Fluorescence, Male, Mediterranean Sea, Mycoplasma genetics, Mycoplasma isolation & purification, RNA, Ribosomal, 16S genetics, Spiroplasma genetics, Spiroplasma isolation & purification, Tenacibaculum genetics, Tenacibaculum isolation & purification, Chlamydia classification, Mycoplasma classification, Scyphozoa microbiology, Spiroplasma classification, Tenacibaculum classification
- Abstract
Cotylorhiza tuberculata is an important scyphozoan jellyfish producing population blooms in the Mediterranean probably due to pelagic ecosystem's decay. Its gastric cavity can serve as a simple model of microbial-animal digestive associations, yet poorly characterized. Using state-of-the-art metagenomic population binning and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), we show that only four novel clonal phylotypes were consistently associated with multiple jellyfish adults. Two affiliated close to Spiroplasma and Mycoplasma genera, one to chlamydial 'Candidatus Syngnamydia', and one to bacteroidetal Tenacibaculum, and were at least one order of magnitude more abundant than any other bacteria detected. Metabolic modelling predicted an aerobic heterotrophic lifestyle for the chlamydia, which were found intracellularly in Onychodromopsis-like ciliates. The Spiroplasma-like organism was predicted to be an anaerobic fermenter associated to some jellyfish cells, whereas the Tenacibaculum-like as free-living aerobic heterotroph, densely colonizing the mesogleal axis inside the gastric filaments. The association between the jellyfish and its reduced microbiome was close and temporally stable, and possibly related to food digestion and protection from pathogens. Based on the genomic and microscopic data, we propose three candidate taxa: 'Candidatus Syngnamydia medusae', 'Candidatus Medusoplasma mediterranei' and 'Candidatus Tenacibaculum medusae'., (© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
28. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores.
- Author
-
Orellana LH, Rodriguez-R LM, and Konstantinidis KT
- Subjects
- Aquatic Organisms genetics, Computational Biology methods, Databases, Genetic statistics & numerical data, Ecosystem, Microbial Consortia genetics, Phylogeny, ROC Curve, Soil Microbiology, Metagenomics statistics & numerical data
- Abstract
Functional annotation of metagenomic and metatranscriptomic data sets relies on similarity searches based on e-value thresholds resulting in an unknown number of false positive and negative matches. To overcome these limitations, we introduce ROCker, aimed at identifying position-specific, most-discriminant thresholds in sliding windows along the sequence of a target protein, accounting for non-discriminative domains shared by unrelated proteins. ROCker employs the receiver operating characteristic (ROC) curve to minimize false discovery rate (FDR) and calculate the best thresholds based on how simulated shotgun metagenomic reads of known composition map onto well-curated reference protein sequences and thus, differs from HMM profiles and related methods. We showcase ROCker using ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes, mediating oxidation of ammonia and the reduction of the potent greenhouse gas, N2O, to inert N2, respectively. ROCker typically showed 60-fold lower FDR when compared to the common practice of using fixed e-values. Previously uncounted ‘atypical’ nosZ genes were found to be two times more abundant, on average, than their typical counterparts in most soil metagenomes and the abundance of bacterial amoA was quantified against the highly-related particulate methane monooxygenase (pmoA). Therefore, ROCker can reliably detect and quantify target genes in short-read metagenomes.
- Published
- 2017
- Full Text
- View/download PDF
29. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils.
- Author
-
Higgins SA, Welsh A, Orellana LH, Konstantinidis KT, Chee-Sanford JC, Sanford RA, Schadt CW, and Löffler FE
- Subjects
- DNA, Fungal genetics, Fungal Proteins analysis, Fungi classification, Fungi isolation & purification, Genetic Variation, Midwestern United States, Nitrates metabolism, Nitrites metabolism, Nitrous Oxide metabolism, Oxidation-Reduction, Oxidoreductases analysis, Polymerase Chain Reaction, Sequence Analysis, DNA, Fungal Proteins genetics, Fungi enzymology, Metagenome, Oxidoreductases genetics, Soil Microbiology
- Abstract
Unlabelled: Members of the Fungi convert nitrate (NO3 (-)) and nitrite (NO2 (-)) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3 (-) or NO2 (-) in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2 (-) Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2 (-), whereas nirK (encoding the NO-forming NO2 (-) reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation., Importance: A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification potential in fungal isolates and agricultural soils. These new PCR primers may find application in a variety of biomes to assess the fungal contributions to N loss and N2O emissions., (Copyright © 2016, American Society for Microbiology. All Rights Reserved.)
- Published
- 2016
- Full Text
- View/download PDF
30. Detecting nitrous oxide reductase (NosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle.
- Author
-
Orellana LH, Rodriguez-R LM, Higgins S, Chee-Sanford JC, Sanford RA, Ritalahti KM, Löffler FE, and Konstantinidis KT
- Subjects
- Algorithms, Computational Biology methods, Nitrogen Cycle, Nitrous Oxide, Phylogeny, Metagenome, Oxidoreductases genetics, Soil chemistry, Soil Microbiology
- Abstract
Unlabelled: Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described "atypical" functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709-19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils., Importance: Nitrous oxide (N2O) is a potent greenhouse gas with ozone layer destruction potential. Microbial activities control both the production and the consumption of N2O, i.e., its conversion to innocuous dinitrogen gas (N2). Until recently, consumption of N2O was attributed to bacteria encoding "typical" nitrous oxide reductase (NosZ). However, recent phylogenetic and physiological studies have shown that previously uncharacterized, functional, "atypical" NosZ proteins are encoded in genomes of diverse bacterial groups. The present study revealed that atypical nosZ genes outnumbered their typical counterparts, highlighting their potential role in N2O consumption in soils and possibly other environments. These findings advance our understanding of the diversity of microbes and functional genes involved in the nitrogen cycle and provide the means (e.g., gene sequences) to study N2O fluxes to the atmosphere and associated climate change., (Copyright © 2014 Orellana et al.)
- Published
- 2014
- Full Text
- View/download PDF
31. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.
- Author
-
Orellana LH and Jerez CA
- Subjects
- Acidithiobacillus growth & development, Adenosine Triphosphatases genetics, Adenosine Triphosphatases metabolism, Bacterial Load, Escherichia coli genetics, Gene Expression, Gene Expression Profiling, Gene Expression Regulation, Bacterial, Gene Expression Regulation, Enzymologic, Genes, Bacterial, Real-Time Polymerase Chain Reaction, Acidithiobacillus drug effects, Acidithiobacillus genetics, Copper toxicity, Drug Resistance, Bacterial, Genomic Islands
- Abstract
There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (<25 mM). When a similar number of bacteria from each strain were mixed and allowed to grow in the absence of copper, their respective final numbers remained approximately equal. However, in the presence of copper, there was a clear overgrowth of strain ATCC 53993 compared to ATCC 23270. This behavior is most likely explained by the presence of the additional copper-resistance genes in the GI of strain ATCC 53993. As determined by qRT-PCR, it was demonstrated that these genes are upregulated when A. ferrooxidans ATCC 53993 is grown in the presence of copper and were shown to be functional when expressed in copper-sensitive Escherichia coli mutants. Thus, the reason for resistance to copper of two strains of the same acidophilic microorganism could be determined by slight differences in their genomes, which may not only lead to changes in their capacities to adapt to their environment, but may also help to select the more fit microorganisms for industrial biomining operations., (© Springer-Verlag 2011)
- Published
- 2011
- Full Text
- View/download PDF
32. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.
- Author
-
Navarro CA, Orellana LH, Mauriaca C, and Jerez CA
- Subjects
- Acidithiobacillus physiology, Anti-Bacterial Agents metabolism, Cloning, Molecular, Computational Biology, Copper metabolism, Escherichia coli drug effects, Escherichia coli genetics, Gene Expression Profiling, Gene Order, Genes, Bacterial, Reverse Transcriptase Polymerase Chain Reaction, Acidithiobacillus drug effects, Anti-Bacterial Agents pharmacology, Copper pharmacology, Drug Resistance, Bacterial, Gene Expression Regulation, Bacterial, Microbial Viability
- Abstract
The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1(Af)], copA2(Af), and copB(Af)), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusA(Af), cusB(Af), and cusC(Af)), and two genes coding for periplasmic chaperones for this metal (cusF(Af) and copC(Af)). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.