1. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence
- Author
-
Kimmoun, O., Hsu, H.C., Branger, H., Li, M. S., Chen, Y. Y., Kharif, C, Onorato, M., Kelleher, Edmund J. R., Kibler, Bertrand, Akhmediev, N., Chabchoub, A., Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), National Cheng Kung University (NCKU), Dipartimento di Fisica [Torino], Università degli studi di Torino (UNITO), Femtosecond Optics Group (FOG), Department of Physics [Imperial College London], Imperial College London-Imperial College London, Laboratoire Interdisciplinaire Carnot de Bourgogne [Dijon] (LICB), Université de Bourgogne (UB)-Université de Technologie de Belfort-Montbeliard (UTBM)-Centre National de la Recherche Scientifique (CNRS), Optical Sciences Group (OSG), Research School of Physics and Engineering [Canberra} (RSPE), Australian National University (ANU)-Australian National University (ANU), The University of Tokyo (UTokyo), Aix-Marseille Université, National Cheng Kung University, Universita degli Studi di Torino, Imperial College London, Laboratoire Interdisciplinaire Carnot de Bourgogne, Australian National University, Marine Technology, Department of Mechanical Engineering, Aalto-yliopisto, Aalto University, Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Torino = University of Turin (UNITO), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), and Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nonlinear optics ,Fluid dynamics ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,Physics - Fluid Dynamics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Pattern Formation and Solitons (nlin.PS) ,Nonlinear Sciences - Pattern Formation and Solitons ,Nonlinear Sciences::Pattern Formation and Solitons ,Article - Abstract
Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. The simplest form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI is tightly related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schr\"odinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios., Comment: 6 pages, 7 figures
- Published
- 2016
- Full Text
- View/download PDF