20 results on '"Oorts, Katrien"'
Search Results
2. Veldhandleiding voor het beschrijven van bodems bij archeologisch onderzoek in Vlaanderen
- Author
-
Mikkelsen, Jari, primary, Ampe, Carole, additional, Cools, Nathalie, additional, Devos, Yannick, additional, Dondeyne, Stefaan, additional, Oorts, Katrien, additional, Pieters, Marnix, additional, and Langohr, Roger, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Do we speak one language on the way to sustainable soil management in Europe? A terminology check via an EU-wide survey
- Author
-
Weninger, Thomas, Ramler, David, Bondi, Giulia, Asins, Sabina, O'Sullivan, Lilian, Assennato, Francesca, Astover, Alar, Bispo, Antonio, Borůvka, Luboš, Buttafuoco, Gabriele, Calzolari, Costanza, Castanheira, Nádia, Cousin, Isabelle, van den Elsen, Erik, Foldal, Cecilie, Hessel, Rudi, Kadžiulienė, Žydrė, Kukk, Liia, Molina, Maria, Montagne, David, Oorts, Katrien, Pindral, Sylwia, Ungaro, Fabrizio, Klimkowicz-Pawlas, Agnieszka, Weninger, Thomas, Ramler, David, Bondi, Giulia, Asins, Sabina, O'Sullivan, Lilian, Assennato, Francesca, Astover, Alar, Bispo, Antonio, Borůvka, Luboš, Buttafuoco, Gabriele, Calzolari, Costanza, Castanheira, Nádia, Cousin, Isabelle, van den Elsen, Erik, Foldal, Cecilie, Hessel, Rudi, Kadžiulienė, Žydrė, Kukk, Liia, Molina, Maria, Montagne, David, Oorts, Katrien, Pindral, Sylwia, Ungaro, Fabrizio, and Klimkowicz-Pawlas, Agnieszka
- Abstract
European soils are under increasing pressure, making it difficult to maintain the provision of soil ecosystem services (SESs). A better understanding of soil processes is needed to counteract soil threats (STs) and to promote sustainable soil management. The EJP SOIL programme of the EU provides a framework for the necessary research. However, different definitions of soil-related terms potentially lead to varied understandings of concepts. Furthermore, there are numerous indicators available to quantify STs or SESs. As unclear communication is a key barrier that hinders the implementation of research results into practice, this study aimed to answer the question about whether the terminology of large-scale initiatives is adequately understood within the soil-science community and non-research stakeholders. An online questionnaire was used to provide definitions for 33 soil-related terms in both scientific and plain language, as well as indicators for seven SESs and 11 STs. Participants were asked to rate their agreement with the definitions and indicators on a seven-grade Likert scale. The level of agreement was calculated as the percentage of ratings above 4, the neutral position. The survey was available from June to September 2023 and was distributed by a snowball approach. More than 260 stakeholders assessed the survey; 70% of respondents were researchers, and 15% were practitioners. Mean agreement levels for the definitions and indicators were generally high, at 85% and 78% respectively. However, it was apparent that the lowest agreement was found for terms that are relatively new, such as Ecosystem Services and Bundle, or unfamiliar for certain subgroups, such as ecological terms for stakeholders working at the farm scale. Due to their distinct majority, the results of this study primarily reflect the opinions of scientists. Thus, broad conclusions can only be drawn by comparing scientists with non-scientists. In this regard, the agreement was surprisingly hi
- Published
- 2024
4. National soil data in EU countries, where do we stand?
- Author
-
Cornu, Sophie, primary, Keesstra, Saskia, additional, Bispo, Antonio, additional, Fantappie, Maria, additional, van Egmond, Fenny, additional, Smreczak, Bozena, additional, Wawer, Rafał, additional, Pavlů, Lenka, additional, Sobocká, Jaroslava, additional, Bakacsi, Zsófia, additional, Farkas‐Iványi, Kinga, additional, Molnár, Sándor, additional, Møller, Anders Bjørn, additional, Madenoglu, Sevinc, additional, Feiziene, Dalia, additional, Oorts, Katrien, additional, Schneider, Florian, additional, Gonçalves, Maria da Conceição, additional, Mano, Raquel, additional, Garland, Gina, additional, Skalský, Rastislav, additional, O'Sullivan, Lilian, additional, Kasparinskis, Raimonds, additional, and Chenu, Claire, additional
- Published
- 2023
- Full Text
- View/download PDF
5. Soil legacy data rescue via GlobalSoilMap and other international and national initiatives
- Author
-
Arrouays, Dominique, Leenaars, Johan G.B., Richer-de-Forges, Anne C., Adhikari, Kabindra, Ballabio, Cristiano, Greve, Mogens, Grundy, Mike, Guerrero, Eliseo, Hempel, Jon, Hengl, Tomislav, Heuvelink, Gerard, Batjes, Niels, Carvalho, Eloi, Hartemink, Alfred, Hewitt, Alan, Hong, Suk-Young, Krasilnikov, Pavel, Lagacherie, Philippe, Lelyk, Glen, Libohova, Zamir, Lilly, Allan, McBratney, Alex, McKenzie, Neil, Vasquez, Gustavo M., Mulder, Vera Leatitia, Minasny, Budiman, Montanarella, Luca, Odeh, Inakwu, Padarian, Jose, Poggio, Laura, Roudier, Pierre, Saby, Nicolas, Savin, Igor, Searle, Ross, Solbovoy, Vladimir, Thompson, James, Smith, Scott, Sulaeman, Yiyi, Vintila, Ruxandra, Rossel, Raphael Viscarra, Wilson, Peter, Zhang, Gan-Lin, Swerts, Martine, Oorts, Katrien, Karklins, Aldis, Feng, Liu, Ibelles Navarro, Alexandro R., Levin, Arkadiy, Laktionova, Tetiana, Dell'Acqua, Martin, Suvannang, Nopmanee, Ruam, Waew, Prasad, Jagdish, Patil, Nitin, Husnjak, Stjepan, Pásztor, László, Okx, Joop, Hallett, Stephen, Keay, Caroline, Farewell, Timothy, Lilja, Harri, Juilleret, Jérôme, Marx, Simone, Takata, Yusuke, Kazuyuki, Yagi, Mansuy, Nicolas, Panagos, Panos, Van Liedekerke, Mark, Skalsky, Rastislav, Sobocka, Jaroslava, Kobza, Josef, Eftekhari, Kamran, Alavipanah, Seyed Kacem, Moussadek, Rachid, Badraoui, Mohamed, Da Silva, Mayesse, Paterson, Garry, Gonçalves, Maria da Conceição, Theocharopoulos, Sid, Yemefack, Martin, Tedou, Silatsa, Vrscaj, Borut, Grob, Urs, Kozák, Josef, Boruvka, Lubos, Dobos, Endre, Taboada, Miguel, Moretti, Lucas, and Rodriguez, Dario
- Published
- 2017
- Full Text
- View/download PDF
6. Technical report on aligned definitions and indicators characterizing agricultural soil threats and ecosystem services in various scales - EJP Soil SERENA Deliverable 1.2
- Author
-
Weninger, Thomas, Ramler, David, Bondi, Giulia, Asins-Velis, Sabina, O'Sullivan, Lilian, Assennato, Francesca, Astover, Alar, Bispo, Antonio, Borůvka, Luboš, Buttafuoco, Gabriele, Calzolari, Costanza, Castanheira, Nádia, Cousin, Isabelle, van den Elsen, H.G.M., Fioramonti, Veronica, Foldal, Cecilie, Hessel, R., Kadziuliene, Zydre, Kukk, Liia, Molina, Maria, Montagne, David, Oorts, Katrien, Pindral, Sylwia, Ungaro, Fabrizio, Klimkowicz-Pawlas, Agnieszka, Weninger, Thomas, Ramler, David, Bondi, Giulia, Asins-Velis, Sabina, O'Sullivan, Lilian, Assennato, Francesca, Astover, Alar, Bispo, Antonio, Borůvka, Luboš, Buttafuoco, Gabriele, Calzolari, Costanza, Castanheira, Nádia, Cousin, Isabelle, van den Elsen, H.G.M., Fioramonti, Veronica, Foldal, Cecilie, Hessel, R., Kadziuliene, Zydre, Kukk, Liia, Molina, Maria, Montagne, David, Oorts, Katrien, Pindral, Sylwia, Ungaro, Fabrizio, and Klimkowicz-Pawlas, Agnieszka
- Abstract
The purpose of SERENA´s task 1.2 is to align research-based definitions of soil policy concepts, soil threats, ecosystem services and relevant indicators amongst end-users representing administration, decision makers and farmers from various European countries and pedo-climatic conditions. To communicate definitions and indicators to stakeholders and gather their opinions, an online questionnaire was developed and widely spread around European soil experts. The agreement of participants with proposed definitions and indicator allocations was demanded and the possibility for text comments was provided. The results showed a high level of agreement with the proposed definitions, only a few were rated distinctively lower than the average and therefore chosen for reformulation. As an interesting pattern, it was observed that rather new terms such as Ecosystem Services or Bundles were rated worse than more established ones. The text comments revealed rather clear and consistent critics and proposals for improvement, which were implemented in a set of new terminology.Files
- Published
- 2023
7. National soil data in EU countries, where do we stand?
- Author
-
Cornu, Sophie, Keesstra, Saskia, Bispo, Antonio, Fantappie, Maria, van Egmond, Fenny, Smreczak, Bozena, Wawer, Rafał, Pavlů, Lenka, Sobocká, Jaroslava, Bakacsi, Zsófia, Farkas-Iványi, Kinga, Molnár, Sándor, Møller, Anders Bjørn, Madenoglu, Sevinc, Feiziene, Dalia, Oorts, Katrien, Schneider, Florian, da Conceição Gonçalves, Maria, Mano, Raquel, Garland, Gina, Skalský, Rastislav, O'Sullivan, Lilian, Kasparinskis, Raimonds, Chenu, Claire, Cornu, Sophie, Keesstra, Saskia, Bispo, Antonio, Fantappie, Maria, van Egmond, Fenny, Smreczak, Bozena, Wawer, Rafał, Pavlů, Lenka, Sobocká, Jaroslava, Bakacsi, Zsófia, Farkas-Iványi, Kinga, Molnár, Sándor, Møller, Anders Bjørn, Madenoglu, Sevinc, Feiziene, Dalia, Oorts, Katrien, Schneider, Florian, da Conceição Gonçalves, Maria, Mano, Raquel, Garland, Gina, Skalský, Rastislav, O'Sullivan, Lilian, Kasparinskis, Raimonds, and Chenu, Claire
- Abstract
At the European scale, soil characteristics are needed to evaluate soil quality, soil health and soil-based ecosystem services in the context of the European Green Deal. While some soil databases exist at the European scale, a much larger wealth of data is present in individual European countries, allowing a more detailed soil assessment. There is thus an urgent and crucial need to combine these data at the European scale. In the frame of a large European Joint Programme on agricultural soils launched by the European Commission, a survey was conducted in the spring of 2020, in the 24 European participating countries to assess the existing soil data sources, focusing on agricultural soils. The survey will become a contribution to the European Soil Observatory, launched in December 2020, which aims to collect metadata of soil databases related to all kind of land uses, including forest and urban soils. Based upon a comprehensive questionnaire, 170 soil databases were identified at local, regional and national scales. Soil parameters were divided into five groups: (1) main soil parameters according to the Global Soil Map specifications; (2) other soil chemical parameters; (3) other physical parameters; (4) other pedological parameters; and (5) soil biological features. A classification based on the environmental zones of Europe was used to distinguish the climatic zones. This survey shows that while most of the main pedological and chemical parameters are included in more than 70% of the country soil databases, water content, contamination with organic pollutants, and biological parameters are the least frequently reported parameters. Such differences will have consequences when developing an EU policy on soil health as proposed under the EU soil strategy for 2023 and using the data to derive soil health indicators. Many differences in the methods used in collecting, preparing, and analysing the soils were found, thus requiring harmonization procedures and more coopera
- Published
- 2023
8. Digital mapping of soil properties using Quantile Regression - Case study from Flanders, Belgium
- Author
-
Wittemans, Kelly, Oorts, Katrien, Vancampenhout, Karen, Van Orshoven, Jos, and Ottoy, Sam
- Published
- 2021
- Full Text
- View/download PDF
9. Modeling soil carbon and nitrogen dynamics in no-till and conventional tillage using PASTIS model
- Author
-
Oorts, Katrien, Garnier, P., Findeling, A., Mary, B., Richard, G., and Nicolardot, B.
- Subjects
Tillage -- Models ,Tillage -- Analysis ,Soil biology -- Models ,Soil biology -- Analysis ,Soil chemistry -- Models ,Soil chemistry -- Analysis ,Earth sciences - Abstract
The performance of the PASTIS model was evaluated to simulate soil C and N fluxes under real field conditions with conventional moldboard plowing (CT) and no-tillage (NT) systems differentiated for 33 yr for a loamy soil in northern France. Afterward, the influences on the C and N fluxes by soil temperature, soil water content, and quantity and localization of soil organic matter (SOM) and crop residues in the soil profile were determined. The model PASTIS was able to provide good simulations for the dynamics of soil water content and temperature, C[O.sub.2] emissions, residue decomposition, and N mineralization. Simulation showed that the presence of the mulch layer in NT reduced cumulative total water evaporation and increased water drainage at the bottom of the 25-cm depth. Furthermore, simulation showed that the larger cumulative total C[O.sub.2] flux in NT resulted from larger C[O.sub.2] emissions as a product of crop residue decomposition and not as product of SOM decomposition. The larger amount of accumulated residues of previous crops in NT more than compensated for the slower residue decomposition rate of surface compared with incorporated residues. It was the water content of the surface crop residues that largely controlled the magnitude of this difference in decomposition rate of the crop residues between CT and NT. This means that, besides the amount of crop residues in both tillage systems, the distribution of rainfall and potential evaporation have a large influence on the differences in C and N fluxes between the two tillage systems Abbreviations: CT, conventional moldboard plowing; NT, no-tillage; SOM, soil organic matter; TDR, time domain reflectometry.
- Published
- 2007
10. Determinants of annual fluxes of CO 2 and N 2O in long-term no-tillage and conventional tillage systems in northern France
- Author
-
Oorts, Katrien, Merckx, Roel, Gréhan, Eric, Labreuche, Jérôme, and Nicolardot, Bernard
- Published
- 2007
- Full Text
- View/download PDF
11. Experimental and simulated soil mineral N dynamics for long-term tillage systems in northern France
- Author
-
Oorts, Katrien, Laurent, François, Mary, Bruno, Thiébeau, Pascal, Labreuche, Jérôme, and Nicolardot, Bernard
- Published
- 2007
- Full Text
- View/download PDF
12. Comparative study of two nitrogen models
- Author
-
El-Sadek, Alaa, Oorts, Katrien, Sammels, Leen, Timmerman, Anthony, Radwan, Mona, and Feyen, Jan
- Subjects
Soil chemistry -- Models ,Chemical models -- Evaluation ,Soils -- Nitrogen content ,Engineering and manufacturing industries ,Science and technology - Abstract
The fate of nitrogen in the soil is of major concern because of the potential hazard for nitrogen, applied in excess of the natural decomposing capacity of the soil, to contaminate shallow and deep aquifers. For the prediction of the nitrogen behavior in soils simulation models are frequently used. In this study the transport and fate of nitrate within the soil profile was analyzed by comparing historic field data with the simulation results of two mathematical models, i.e., the water and agrochemicals in the soil crop and Vadose environment (WAVE) and DRAINMOD-N. After calibration and validation of both models, they were used to simulate the nitrogen transport and transformation of the Hooibeekhoeve experiment, situated in the sandy region of the Kempen, Belgium, for a 30-year (1969-1998) period. In the analysis a continuous cropping with maize was assumed. Comparison between experimental measured and simulated state variables indicate that the nitrate concentrations in the soil and nitrate leaching to drains are controlled by the fertilizer practice, the initial conditions and the rainfall depth, and distribution. Furthermore, the study reveals that the models used give a fair description of the nitrogen dynamics in the profile root zone at field scale. It was concluded that the calibrated models are useful tools to optimize the nitrogen application strategy resulting in an acceptable level of nitrate leaching for a long period as a function of the combination 'climate--crop--soil--bottom boundary condition.' CE Database keywords: Nitrogen; Nitrates; Simulation; Leaching.
- Published
- 2003
13. C and N mineralization of undisrupted and disrupted soil from different structural zones of conventional tillage and no-tillage systems in northern France
- Author
-
Oorts, Katrien, Nicolardot, B., Merckx, R., Richard, G., and Boizard, H.
- Published
- 2006
- Full Text
- View/download PDF
14. The Database of the Subsoil in Flanders (DOV) related to soil and archaeological research
- Author
-
Oorts, Katrien, V. Vanwesenbeeck, Veerle, Van Damme, M., and Buyle, S
- Subjects
soil, soil data, database, DOV, soil profile, soil map, soil heritage, photographs, erosion, soil organic carbon content, landslides, archaeological research - Abstract
ABSRACT: Soil data in Flanders are included in the DOV soil database available to all users. As such, the work done by soil surveyors and scientists is still very relevant today. This paper explains what kind of soil data are included in DOV and how they can be consulted. The aim of DOV is to become the reference for sharing data, knowledge and services, about the soil and subsoil of Flanders. It concerns open data, which can be integrated and linked to other data sources. In addition to raw data, DOV offers professional knowledge and interpreted information, as well as the services and applications to activate and mobilize these data., This article is part of a book edited at the occasion of the Geoarchaeological meeting of Bruges: Soils as records of Past and Present: the geoarchaeological approach. Focus on: is there time for fieldwork today? - Bruges (Belgium), 6 and 7.11.2019. Editors Judit Deák, Carole Ampe and Jari Hinsch Mikkelsen Technical editor Mariebelle Deceuninck English language reviewer Caroline Landsheere Graphic design Frederick Moyaert Printing and binding Die Keure, Bruges
- Published
- 2019
- Full Text
- View/download PDF
15. Seeing the soil through the net : an eye-opener on the soil map of the Flemish region (Belgium)
- Author
-
Dondeyne, Stefaan, Vanierschot, Laura, Langohr, Roger, Van Ranst, Eric, Deckers, Jozef, and Oorts, Katrien
- Subjects
Earth and Environmental Sciences - Published
- 2017
16. Effect of tillage systems on soil organic matter stocks and C and N fluxes in cereal cropping systems on a silt loam soil in Northern France
- Author
-
Oorts, Katrien, Unité de Recherche Agronomie Laon-Reims-Mons (UA LRM), Institut National de la Recherche Agronomique (INRA), Institut national agronomique paris-grignon - INA P-G, Université Catholique de Louvain, Bernard Nicolardot, DR INRA Reims, Roel Merckx, Professeur KU Leuven (Belgique)(nicolard@reims.inra.fr, roel.merckx@agr.kuleuven.ac.be), Unité d'Agronomie de Laon-Reims-Mons (AGRO-LRM), and Nicolardot, Bernard
- Subjects
organic matter protection ,crop residues ,soil tillage ,décomposition ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,nitrogen ,modelling ,soil organic matter ,greenhouse gases emission ,mineralization ,long term field experiment ,modélisation ,azote ,protection des matières organiques ,carbon ,N2O ,émission de gaz à effet de serre ,résidus de culture ,incubation ,travail du sol ,carbon sequestration ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,stockage de carbone ,CO2 ,carbone ,minéralisation ,matière organique du sol ,dispositif de longue durée - Abstract
For many centuries, the conventional mouldboard tillage system was used in agriculture to control the development of weeds, to incorporate crop residues into the soil, to recycle leached nutrients back to the surface and to create an adequate structure before planting. However, after the development of herbicides the need for ploughing was questioned and reduced tillage systems were introduced. These reduced tillage systems have two main characteristics: (i) the soil is not entirely turned over and (ii) the soil is always entirely or partially covered by residues. The shift from mouldboard ploughing to no-tillage so induces changes in the soil structure and in the location of soil organic matter and crop residues. This results in changes in soil climate (soil temperature and soil water content) and in several biological, chemical and physical soil properties. The combination of all these modifications has an important impact on C and N transformations in the soil. The overall objectives of this work were twofold. First, we quantified the changes in C and N pools and in C and N fluxes between different long-term (32 years) tillage systems in cereal cropping systems in northern France, and second, we studied the effects of soil climatic conditions, soil structure and biological and physical properties of the soil on the differences in the C and N cycles between those tillage systems. This work focused mainly on those parameters with important agronomical or environmental impacts: soil organic C and N contents and distribution, soil mineral N dynamics and CO2 and N2O emissions. Two contrasting tillage systems were considered, i.e. conventional mouldboard ploughing to 20 cm depth (CT) and no-tillage (NT). These systems were studied on two different sets of plots with a maize-wheat rotation on the same experimental site at Boigneville in the Parisian Basin in Northern France. After 32 years, NT presented 5-15% larger C stocks and 3-10% larger N stocks compared to CT, but these differences were not always statistically significant. Soil organic C and N concentrations decreased with increasing depth in NT, whereas they were relatively homogeneously distributed through the plough layer in CT. The small stock differences were further explored by examining the changes at different levels of structural complexity. Mineral-associated N and particulate organic matter each accounted for about 50% of the total difference in N stock. However, 66% of the total difference in C stock was due to differences in the particulate organic matter (58%) and free residues (8%) fractions. Additional C and N were detected in NT in the water stable macroaggregates. Our results suggest that the larger C and N stocks in NT are attributed to (i) enhanced macroaggregate formation in the 0-5 cm layer due to higher microbial activity and SOM content and (ii) a better protection of soil organic matter in the 5 20 cm layer due to a larger proportion of small pores and lack of soil disruption by tillage or climate. The tillage systems did not induce large differences in water and nitrate content in the 0 120 cm soil profile. When the LIXIM model was applied to these data the calculated ‘in situ' N mineralisation rates, expressed both in calendar days and in normalised days (for soil temperature and moisture content), were comparable in both tillage systems and clearly demonstrated that the soil N supply in both systems was comparable. NT always tended to emit more N2O than CT. In addition, CT or NT emitted the larger amount of CO2 in the absence of plants depending on the weather conditions (rainfall and temperature) and the amount and location of crop residues. The cumulated CO2 emissions for the specific weather conditions of the measurement year were significantly larger for NT than for CT. In the second part of our work we studied the effects of differences in soil climatic conditions, soil structure, organic matter location and soil biological and physical properties between the tillage systems on the observed differences in the C and N cycles. We first determined whether the differences in C and N stocks and fluxes in CT and NT were due to changes in the potential decomposition rate of the SOM. Our results clearly showed that after 32 years the potential C and N mineralisation of soil organic matter under controlled conditions (temperature and soil water pressure) was not smaller in NT compared to CT. The physical protection of the soil organic matter against mineralisation was evaluated by incubating soil samples after soil structures between 50 µm and 12.5 mm had been progressively destroyed. The samples were taken from four structural zones of the CT and NT plots: loose and dense structural zones in the plough layer of CT and the 0-5 and 5-20 cm soil layers in NT. Our results indicate that the structural zone with the largest C and N stocks and the largest amount of water stable aggregates (0-5 cm soil layer of NT) showed the smallest increase in N mineralisation and no increase in C mineralisation after soil structure disruption. Of the four structural zones, the 5-20 cm soil layer of NT showed the largest effect of physical protection of SOM. Secondly, our measurements indicated that differences in soil temperature and soil water content between CT and NT induced differences in ‘in situ' soil organic matter decomposition. These differences were often small and not systematically more favorable to decomposition over time in a given tillage system. On the other hand, a large influence of the distribution and amount of rainfall and water evaporation on the dynamics of the CO2 fluxes was observed. In NT, rainfall induced considerable residue decomposition and, consequently, bursts of CO2 emissions due to a sudden increase in the water content of the surface residues. However, after a rain event, the water content of the surface residues fell rapidly and, again, seriously limited their decomposition resulting in smaller CO2 emissions compared to CT. Finally, C and N fluxes were simulated using the PASTIS model. Modelling provides a better understanding of the individual effects and interactions of the determining factors on C and N dynamics. The simulations showed that the larger cumulative total CO2 fluxes in NT resulted from a more extensive crop residue decomposition and not from an enhanced SOM decomposition because the large amount of accumulated residues of previous crops in NT more than compensated for the slower residue decomposition rate of surface residues in these long-term differentiated tillage systems. The water content of the surface crop residues was found to be key in determing the magnitude of the difference in decomposition rate between the incorporated residues in CT and the surface residues in NT., Pendant plusieurs siècles, le sol a été labouré pour contrôler le développement des mauvaises herbes, incorporer des résidus de culture et préparer le sol avant le semis. Après le développement des herbicides la nécessité de labourer a été posée et des systèmes de travail du sol réduit ont été introduits. Ces systèmes de travail du sol réduit ont deux caractéristiques : (i) le sol n'est plus labouré et, (ii) le sol est toujours complètement ou partiellement couvert avec des résidus de culture. Le passage du labour profond au semis-direct (un système de travail du sol réduit) induit des modifications dans la structure du sol et la localisation de la matière organique du sol (MOS) et des résidus de culture. Ceci entraîne des modifications dans le climat du sol (température et humidité) et certaines propriétés biologiques, chimiques et physiques du sol. La combinaison de toutes ces modifications a une influence importante sur les transformations de l'azote et du carbone dans le sol. Les objectifs de notre étude ont été de (i) quantifier les différences des stocks et de flux de carbone et de l'azote entre différents systèmes de travail du sol différenciés depuis 32 années dans un sol limoneux de grande culture du bassin Parisien et, (ii) expliciter les effets du climat du sol, de la structure et des propriétés biologiques et physiques du sol sur les différences de fonctionnement des cycles du carbone et de l'azote du sol. Cette étude a été essentiellement focalisée sur les variables qui ont un impact agronomique ou environnemental : carbone et azote organique du sol, dynamique de l'azote minéral du sol et les émissions de CO2 et N2O. Deux systèmes de travail du sol ont été étudiés : le labour (CT) et le semis-direct (NT). Ces systèmes de travail du sol ont été suivis sur des parcelles en rotation maïs-blé du site expérimental de Boigneville (91) en France. NT présente des stocks de carbone 5 à 15 % plus importants et des stocks d'azote 3 à 10% supérieurs à ceux mesurés pour CT, mais ces différences n'ont pas toujours été statistiquement significatives. Les concentrations de C et N diminuent avec la profondeur en NT alors qu'elles sont distribuées de façon homogène dans la couche labourée en CT. La différence de stock d'azote organique associé aux argiles et limons et la différence de stock d'azote associé à la matière organique particulaire (MOP) ont chacune expliqué 50 % de la différence de stock d'azote total entre les deux systèmes. 66 % de la différence du stock de carbone total du sol ont été explicités par la différence de stock de carbone présent dans la MOP (58 %) et les résidus de culture (8 %). Le carbone et l'azote additionnel dans NT se situe dans des agrégats. Nos résultats suggèrent que les stocks de C et N plus importants pour NT peuvent être attribués à (i) la formation de macroagrégats plus prononcée dans la couche 0-5 cm due à l'activité microbienne et aux stocks de MOS plus importants et, (ii) la meilleure protection de la MOS dans la couche 5-20 cm due à une porosité du sol plus faible et à l'absence de la destruction de la structure du sol par le travail du sol ou le climat. Les modalités de travail du sol n'ont pratiquement pas eu d'influence sur les dynamiques de l'eau et de nitrates dans le profil (0-120 cm) du sol. L'interprétation des données avec le modèle LIXIM a permis de calculer des vitesses de minéralisation comparables pour les 2 systèmes que celles-ci soient calculées avec une échelle de temps exprimée en jours calendaires ou en jours normalisés (à une température et une humidité du sol de référence). Ces résultats montrent que la fourniture d'azote minéral par le sol est similaire dans les différents systèmes de travail du sol étudiés à Boigneville. Par ailleurs, les émissions de N2O ont eu tendance à être plus élevées pour NT que pour CT. Les émissions de CO2 en absence de couvert végétal ont pu être plus importantes pour l'un ou l'autre des systèmes de travail du sol en fonction des conditions climatiques et de la localisation des résidus de culture. Le cumul des quantités de CO2 émis par NT a été significativement plus important que pour CT. Au cours d'une seconde partie du travail, nous avons cherché à montrer si les différences de stocks et de flux de C et N entre les différentes modalités de travail du sol étaient le résultat des modifications des conditions climatiques, de la localisation et des quantités de SOM et résidus de culture ou des propriétés biologiques ou physiques du sol. D'abord, nos résultats ont montré que la minéralisation potentielle du C et N en conditions contrôlées n'a pas été moins importante pour NT comparé à CT. Par ailleurs, la protection physique de la MOS contre la minéralisation du C et N a été évaluée par incubation d'échantillons de sol dont les structures entre 50 µm et 12.5 mm ont été progressivement détruites. Quatre zones structurales ont été considérées : zones avec une structure poreuse ou compacte pour CT et horizons 0-5 et 5-20 cm pour NT. Les résultats indiquent que la destruction de la structure de l'horizon 0-5 cm de NT induit une faible augmentation de la minéralisation de l'azote et pas d'augmentation pour la minéralisation du carbone. La protection de la MOS est en réalité la plus importante pour la couche 5-20 cm du NT. Ensuite, les différences de décomposition de la MOS entre CT et NT au champ ont été influencées par des différences de la température et de l'humidité du sol. Toutefois ces différences ont été souvent faibles et les conditions n'ont pas été systématiquement plus favorables pour la décomposition dans l'un ou l'autre des systèmes de travail du sol. Néanmoins, la distribution et la quantité de pluie et l'évaporation d'eau ont eu une influence importante sur la dynamique des flux de CO2. Les pluies induisent une réhumectation rapide des résidus de surface qui entraîne une augmentation importante des flux de CO2 pour NT par rapport à CT. Après les pluies, la teneur en eau des résidus de surface diminue rapidement ce qui limite sérieusement leur décomposition entraînant des émissions plus faibles pour NT comparé à CT. Finalement, les flux de C et N ont été simulés avec le modèle PASTIS. Les simulations ont montré que la quantité cumulée plus importante de CO2 émise par NT a résulté d'une décomposition plus importante des résidus de culture et pas d'une différence de décomposition des MOS. En réalité, la plus grande quantité des résidus de culture accumulée à la surface du sol dans NT fait plus que compenser la plus faible vitesse de décomposition des résidus en surface pour NT comparé avec la situation de résidus enfouis pour CT. En définitive, c'est la teneur en eau du mulch de résidus qui contrôle le plus l'amplitude de la différence de vitesse de décomposition des résidus entre CT et NT.
- Published
- 2006
17. Richtwaarde voor de residuele nitraatstikstof in de bodem: modelaanpak, -resultaten en ruimtelijke differentiatie
- Author
-
Van Orshoven, Jos, Oorts, Katrien, Librecht, Ireen, Rombauts, Stijn, and Feyen, Jan
- Abstract
ispartof: pages:59-87 ispartof: Voordracht pages:59-87 ispartof: KVIV-studie- en vervolmakingsdag 'Stikstofproblematiek in de landbouw: evaluatie, maatregelen, consequenties' location:Meise status: published
- Published
- 2002
18. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France
- Author
-
Oorts, Katrien, primary, Merckx, Roel, additional, Gréhan, Eric, additional, Labreuche, Jérôme, additional, and Nicolardot, Bernard, additional
- Published
- 2007
- Full Text
- View/download PDF
19. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France
- Author
-
Oorts, Katrien, primary, Bossuyt, H., additional, Labreuche, J., additional, Merckx, R., additional, and Nicolardot, B., additional
- Published
- 2007
- Full Text
- View/download PDF
20. Determinants of annual fluxes of CO2 and N2O in long-term no-tillage and conventional tillage systems in northern France
- Author
-
Oorts, Katrien, Merckx, Roel, Gréhan, Eric, Labreuche, Jérôme, and Nicolardot, Bernard
- Subjects
- *
GREENHOUSE gases , *TILLAGE , *SOIL management , *AGRICULTURE - Abstract
Abstract: The greenhouse gases CO2 and N2O emissions were quantified in a long-term experiment in northern France, in which no-till (NT) and conventional tillage (CT) had been differentiated during 32 years in plots under a maize–wheat rotation. Continuous CO2 and periodical N2O soil emission measurements were performed during two periods: under maize cultivation (April 2003–July 2003) and during the fallow period after wheat harvest (August 2003–March 2004). In order to document the dynamics and importance of these emissions, soil organic C and mineral N, residue decomposition, soil potential for CO2 emission and climatic data were measured. CO2 emissions were significantly larger in NT on 53% and in CT on 6% of the days. From April to July 2003 and from November 2003 to March 2004, the cumulated CO2 emissions did not differ significantly between CT and NT. However, the cumulated CO2 emissions from August to November 2003 were considerably larger for NT than for CT. Over the entire 331 days of measurement, CT and NT emitted 3160±269 and 4064±138kg CO2-Cha−1, respectively. The differences in CO2 emissions in the two tillage systems resulted from the soil climatic conditions and the amounts and location of crop residues and SOM. A large proportion of the CO2 emissions in NT over the entire measurement period was probably due to the decomposition of old weathered residues. NT tended to emit more N2O than CT over the entire measurement period. However differences were statistically significant in only half of the cases due to important variability. N2O emissions were generally less than 5gNha−1 day−1, except for a few dates where emission increased up to 21gNha−1 day−1. These N2O fluxes represented 0.80±0.15 and 1.32±0.52kg N2O-N ha−1 year−1 for CT and NT, respectively. Depending on the periods, a large part of the N2O emissions occurred was probably induced by nitrification, since soil conditions were not favorable for denitrification. Finally, for the period of measurement after 32 years of tillage treatments, the NT system emitted more greenhouses gases (CO2 and N2O) to the atmosphere on an annual basis than the CT system. [Copyright &y& Elsevier]
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.