The most important property of the Gene Ontology is the terms. These control vocabularies are defined to provide consistent descriptions of gene products that are shareable and computationally accessible by humans, software agent, or other machine-readable meta-data. Each term is associated with information such as definition, synonyms, database references, amino acid sequences, and relationships to other terms. This information has made the Gene Ontology broadly applied in microarray and proteomic analysis. However, the process of searching the terms is still carried out using traditional approach which is based on keyword matching. The weaknesses of this approach are: ignoring semantic relationships between terms, and highly depending on a specialist to find similar terms. Therefore, this study combines semantic similarity measure and genetic algorithm to perform a better retrieval process for searching semantically similar terms. The semantic similarity measure is used to compute similitude strength between two terms. Then, the genetic algorithm is employed to perform batch retrievals and to handle the situation of the large search space of the Gene Ontology graph. The computational results are presented to show the effectiveness of the proposed algorithm., {"references":["M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M.\nCherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris,\nD.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E.\nRichardson, M. Ringwald, G.M. Rubin, and G.. Sherlock, \"Gene\nontology: tool for the unification of biology,\" Nat. Genet., vol. 25, no. 1,\npp. 25-29, May 2000.","H. Wu, Z. Su, F. Mao, V. Olman, and Y. Xu, \"Prediction of functional\nmodules based on comparative genome analysis and gene ontology\napplication,\" Nucleic Acids Res., vol. 33, no. 9, pp. 2822-2837, May\n2005.","J.A. Young, Q.L. Fivelman, P.L. Blair, P. de la Vega, K.G. Le Roch, Y.\nZhou, D.J. Carucci, D.A. Baker, and E.A. Winzeler, \"The plasmodium\nfalciparum sexual development transcriptome: a microarray analysis\nusing ontology-based pattern identification,\" Mol. Biochem. Parasitol.,\nvol. 143, no. 1, pp. 67-79, Sep. 2005.","J. Espadaler, O. Romero-Isart, R.M. Jackson, and B. Oliva, \"Prediction\nof protein-protein interactions using distant conservation of sequence\npatterns and structure relationships,\" Bioinformatics, vol. 21, no. 16, pp.\n3360-3368, Aug. 2005.","S.M. Hauck, S. Schoeffmann, C.A. Deeg, C.J. Gloeckner, M.S. Lange,\nand M. Ueffing, \"Proteomic analysis of the porcine interphotoreceptor\nmatrix,\" Proteomics, vol. 5, no. 14, pp. 3623-3636, Sep. 2005.","P.W. Lord, R.D. Stevens, A. Brass, and C.A. Goble, \"Investigating\nsemantic similarity measures across the gene ontology: the relationship\nbetween sequence and annotation,\" Bioinformatics, vol. 19, no. 10, pp.\n1275-1283, Jul. 2003.","K. Eilbeck, S.E. Lewis, C.J. Mungall, M. Yandell, L. Stein, R. Durbin,\nand M. Ashburner, \"The sequence ontology: a tool for the unification of\ngenome annotations,\" Genome Biol., vol. 6, no. 5, rec. R44, Apr. 2005.","J. Bard, S.Y. Rhee, and M. Ashburner, \"An ontology for cell types,\"\nGenome Biol., vol. 6, no. 2, rec. R21, Jan. 2005.","H.J. Feldman, M. Dumontier, S. Ling, N. Haider, and C.W. Hogue, \"CO:\na chemical ontology for identification of functional groups and semantic\ncomparison of small molecules,\" FEBS Lett., vol. 579, no. 21, pp. 4685-\n4691, Aug. 2005.\n[10] J.D. Thompson, S.R. Holbrook, K. Katoh, P. Koehl, D. Moras, E.\nWesthof, and O. Poch, \"MAO: a multiple alignment ontology for nucleic\nacid and protein sequences,\" Nucleic Acids Res., vol. 33, no. 13, pp.\n4164-4171, Jul. 2005.\n[11] P. Grenon, B. Smith, and L. Goldberg, \"Biodynamic ontology: applying\nBFO in the biomedical domain,\" Stud. Health Technol. Inform., vol. 102,\npp. 20-38, Apr. 2004.\n[12] E. Ratsch, J. Schultz, J. Saric, P.C. Lavin, U. Wittig, U. Reyle, and I.\nRojas, \"Developing a protein-interactions ontology,\" Comp. Funct.\nGenom., vol. 4, no. 1, pp. 85-89, Feb. 2003.\n[13] H. Liu, Z. Hu, and C.H. Wu, \"DynGO: a tool for browsing and mining\ngene ontology and its associations,\" BMC Bioinformatics, vol. 6, rec.\n201, Aug. 2005.\n[14] F. Couto, M. Silva, and P. Coutinho, \"Semantic similarity over the gene\nontology: family correlation and selecting disjunctive ancestors,\"\npresented at the 14th ACM Conf. Information and Knowledge\nManagement, Bremen, Germany, Oct. 31 - Nov. 5, 2005.\n[15] M.A. Rodriguez and M.J. Egenhofer, \"Determining semantic similarity\namong entity classes from different ontologies,\" IEEE Trans. Knowledge\nand Data Engineering, vol. 15, no. 2, pp. 442-456, Mar. 2003.\n[16] C.-C. Feng and D.M. Flewelling, \"Assessment of semantic similarity\nbetween land use/land cover classification systems,\" Computers,\nEnvironment, and Urban Systems, vol. 28, no. 3, pp. 229-246, May\n2004.\n[17] G. Vigliocco, D.P. Vinson, and S. Siri, \"Semantic similarity and\ngrammatical class in naming actions,\" Cognition, vol. 94, no. 3, pp. B91-\nB100, Jan. 2005.\n[18] J.L. Sevilla, V. Segura, A. Podhorski, E. Guruceaga, J.M. Mato, L.A.\nMartínez-Cruz, F.J. Corrales, and A. Rubio, \"Correlation between gene\nexpression and GO semantic similarity,\" IEEE/ACM Trans.\nComputational Biology and Bioinformatics, vol. 2, no. 4, pp. 330-\n338, Oct-Dec 2005.\n[19] C. Leacock and M. Chodorow, \"Combining local context and WordNet\nsimilarity for word sense identification,\" in WordNet: An Electronic\nLexical Database, C. Fellbaum, Ed. Cambridge: MIT Press, 1998, pp.\n265-283.\n[20] D. Lin, \"An information-theoretic definition of similarity,\" in Proc. 15th\nInt. Conf. Machine Learning, Madison, WI, 1998, pp. 296-304.\n[21] J.J. Jiang and D.W. Conrath, \"Semantic similarity based on corpus\nstatistics and lexical taxonomy,\" in Proc. 1998 Int. Conf. Research in\nComputational Linguistics, Taipei, Taiwan, 1998, pp. 19-33.\n[22] P. Resnik, \"Using information content to evaluate semantic similarity in\na taxonomy,\" in Proc. 14th Int. Joint Conf. Artificial Intelligence,\nMontreal, Canada, 1995, pp. 448-453.\n[23] A. Budanitsky and G. Hirst, \"Semantic distance in WordNet: an\nexperimental, application-oriented evaluation of five measures,\"\npresented at the 2nd Meeting North American Chapter of the\nAssociation for Computational Linguistics, Pittsburgh, PA, Jun. 2-7,\n2001.\n[24] L. Chen, C. Luh, and C. Jou, \"Generating page clippings from web\nsearch results using a dynamically terminated genetic algorithm,\"\nInformation Systems, vol. 30, no. 4, pp. 299-316, Jun. 2005.\n[25] M. Caramia, G. Felici, and A. Pezzoli, \"Improving search results with\ndata mining in a thematic search engine,\" Computers & Operations\nResearch, vol. 31, no. 14, pp. 2387-2404, Dec. 2004.\n[26] Z.Z. Nick and P. Themis, \"Web search using a genetic algorithm,\"\nInternet Computing, vol. 5, no. 2, pp. 18-26, Mar. 2001.\n[27] L. Tamine, C. Chrisment, and M. Boughanem, \"Multiple query\nevaluation based on an enhanced genetic algorithm,\" Information\nProcessing & Management, vol. 39, no. 2, pp. 215-231, Mar. 2003.\n[28] J. Horng and C. Yeh, \"Applying genetic algorithms to query\noptimization in document retrieval,\" Information Processing &\nManagement, vol. 36, no. 5, pp. 737-759, Sep. 2000.\n[29] I. Kushchu, \"Web-based evolutionary and adaptive information\nretrieval,\" IEEE Trans. Evolutionary Computation, vol. 9, no. 2, pp.\n117-125, Apr. 2005.\n[30] S.K. Pal, V. Talwar, and P. Mitra, \"Web mining in soft computing\nframework: relevance, state of the art and future directions,\" IEEE\nTrans. Neural Networks, vol. 13, no. 5, pp. 1163-1177, Sep. 2002.\n[31] H. Chen, \"Machine learning for information retrieval: neural networks,\nsymbolic learning, and genetic algorithms,\" J. American Society for\nInformation Science, vol. 46, no. 3, pp. 194-216, Apr. 1995.\n[32] R.M. Othman, S. Deris, R.M. Illias, Z. Zakaria, and S.M. Mohamad,\n\"Automatic clustering of gene ontology by genetic algorithm,\" Int. J.\nInformation Technology, vol. 3, no. 1, pp. 37-46, Apr. 2006."]}