1. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data
- Author
-
Onana, Vincent De Paul, Koenig, Lora Suzanne, Ruth, Julia, Studinger, Michael, and Harbeck, Jeremy P
- Subjects
Geophysics ,Meteorology And Climatology - Abstract
Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.
- Published
- 2014
- Full Text
- View/download PDF