26 results on '"On-line recognition"'
Search Results
2. Towards On-Line Sign Language Recognition Using Cumulative SD-VLAD Descriptors
- Author
-
Rodríguez, Jefferson, Martínez, Fabio, Barbosa, Simone Diniz Junqueira, Series Editor, Filipe, Joaquim, Series Editor, Kotenko, Igor, Series Editor, Sivalingam, Krishna M., Series Editor, Washio, Takashi, Series Editor, Yuan, Junsong, Series Editor, Zhou, Lizhu, Series Editor, Serrano C., Jairo E., editor, and Martínez-Santos, Juan Carlos, editor
- Published
- 2018
- Full Text
- View/download PDF
3. Features Extraction and On-line Recognition of Isolated Arabic Characters
- Author
-
Samir, Benbakreti, Aoued, Boukelif, Kacprzyk, Janusz, Series editor, Shaalan, Khaled, editor, Hassanien, Aboul Ella, editor, and Tolba, Fahmy, editor
- Published
- 2018
- Full Text
- View/download PDF
4. Temporal Neural System Applied to Arabic Online Characters Recognition.
- Author
-
Belbachir, Khadidja and Tlemsani, Redouane
- Published
- 2019
5. Signature verification: A comprehensive study of the hidden signature method
- Author
-
Putz-Leszczyńska Joanna
- Subjects
verification ,on-line recognition ,time warping ,hidden signature ,Mathematics ,QA1-939 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
Many handwritten signature verification algorithms have been developed in order to distinguish between genuine signatures and forgeries. An important group of these methods is based on dynamic time warping (DTW). Traditional use of DTW for signature verification consists in forming a misalignment score between the verified signature and a set of template signatures. The right selection of template signatures has a big impact on that verification. In this article, we describe our proposition for replacing the template signatures with the hidden signature-an artificial signature which is created by minimizing the mean misalignment between itself and the signatures from the enrollment set. We present a few hidden signature estimation methods together with their comprehensive comparison. The hidden signature opens a number of new possibilities for signature analysis. We apply statistical properties of the hidden signature to normalize the error signal of the verified signature and to use the misalignment on the normalized errors as a verification basis. A result, we achieve satisfying error rates that allow creating an on-line system, ready for operating in a real-world environment
- Published
- 2015
- Full Text
- View/download PDF
6. Realtime recognition of multi-finger prehensile gestures.
- Author
-
Nianfeng Wang, Yulong Chen, and Xianmin Zhang
- Subjects
GESTURE ,ELECTROMYOGRAPHY ,REAL-time control ,AUTOREGRESSIVE models ,ANALYSIS of variance - Abstract
This paper presents an on-line myoelectric control system which can classify eight prehensile hand gestures with only two electrodes. The overlapping windowing scheme is adopted in the system leading a continuous decisions flow. We choose mean absolute value (MAV), variance (VAR), the fourth-order autoregressive (AR) coefficient and Sample entropy (SampEn) as the feature set and utilize the linear discriminant analysis (LDA) to reduce the dimension and obtain the projected feature sets. The current projected feature set and the previous one are "pre-smoothed" before the classification, and then a decision is generated by LDA classifier. To get the final decision from the decisions flow, the current decision and m previous decisions are "post-smoothed". The method mentioned above can obtain a 99.04% off-line accuracy rate and a 97.35% on-line accuracy rate for individual gesture. By choosing a proper value of m, this method can also get a 99.79% accuracy rate for on-line recognition of complex sequences of hand gestures without interruption. In addition, a virtual hand has been developed to display the on-line recognition result visually, and a proper control strategy is proposed to realize the continuous switch of hand gestures. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
7. Spatio-temporal constraints for on-line 3D object recognition in videos.
- Author
-
Noceti, Nicoletta, Delponte, Elisabetta, and Odone, Francesca
- Subjects
PATTERN recognition systems ,THREE-dimensional imaging ,VIDEOS ,ROBUST control ,AD hoc computer networks ,SCIENTIFIC experimentation ,REAL-time control - Abstract
Abstract: This paper considers view-based 3D object recognition in videos. The availability of video sequences allows us to address recognition exploiting both space and time information to build models of the object that are robust to view-point variations. In order to limit the amount of information potentially available in a video we adopt a description of the video content based on the use of local scale-invariant features, both on the object modeling (training sequence) and the recognition phase (test sequences). Then, by means of an ad hoc matching procedure, we look for similar groups of features both in modeling and recognition. The final pipeline we propose is based on the construction of an incremental model of the test sequence, thanks to which we perform on-line recognition. We present experimental results on objects recognition in videos, showing how our approach can be effectively applied to rather complex settings. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
8. A SYSTEM FOR ON-LINE RECOGNITION OF CHINESE CHARACTERS.
- Author
-
CHEN, KEH-JIANN, LI, KUO-CHUN, and CHANG, YEONG-LONG
- Abstract
The target of this recognition system is the set of handwritten Chinese characters input from tablet devices with stroke-sequence and stroke-count being free but within the constraint of normal writing. A formalism based upon an initial stroke-sequence decision tree and position matching has been developed for recognizing handwritten Chinese characters. This formalism has the advantages of using the features of strokes, stroke-sequence, and geometric relations but avoids the disadvantages caused by the instability of all of the above features. With extensive training, it can be proven that this formalism may provide a very promising result even in handling erroneous writing such as missing a stroke, wrong writing sequence etc. [ABSTRACT FROM AUTHOR]
- Published
- 1988
- Full Text
- View/download PDF
9. Real-time interpretation of geometric shapes for digital learning
- Author
-
Krichen, Omar, Girard, Nathalie, Anquetil, Eric, Renault, Mickaël, intuitive user interaction for document (IntuiDoc), MEDIA ET INTERACTIONS (IRISA-D6), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Rennes (ENS Rennes)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Télécom Bretagne-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), EFRAN-ACTIF, EFRAN-INTUIGEO, Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-Télécom Bretagne-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA), Université de Rennes (UR), and krichen, omar
- Subjects
[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.EIAH] Computer Science [cs]/Technology for Human Learning ,On-line Recognition ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.EIAH]Computer Science [cs]/Technology for Human Learning ,Digital learning ,Hand-drawn stroke analysis - Abstract
International audience; In the context of the ACTIF project that aims for active and collaborative learning promotion, this paper presents a pattern recognition and analysis system for Geometry learning in middle school. The goal is to allow students to draw geometric shapes on a touch-tablet, given a teacher's instruction. To make the student active, the system have to recognize and analyze on the fly the student's productions in order to produce real-time visual, corrective, and guidance feedback. We base our work on the visual grammar CD-CMG [1] (Context Driven Constraints Multi-set Grammar), to model the domain prior knowledge and interpret the hand-drawn sketches on the fly. Our first contribution lies in adapting this grammar to the Geometry domain to cover the geometric objects taught in middle school curriculum. Although being expressive enough to model this large scope, the formalism could not cope with the exigence of real-time analysis, given that the multiple interactions between geometric objects generate combinatorial issues. Our second contribution lies in extending the formalism which resulted in having an acceptable performance for a real-time user interaction system. The first experiments show that the proposed approach allows complexity and interpretation time reduction.
- Published
- 2018
10. Signature verification: A comprehensive study of the hidden signature method
- Author
-
Joanna Putz-Leszczynska
- Subjects
Dynamic time warping ,Computer science ,computer.software_genre ,Set (abstract data type) ,Error signal ,on-line recognition ,Computer Science (miscellaneous) ,QA1-939 ,Engineering (miscellaneous) ,Signature recognition ,time warping ,Basis (linear algebra) ,business.industry ,Applied Mathematics ,hidden signature ,Pattern recognition ,QA75.5-76.95 ,Signature (logic) ,Electronic computers. Computer science ,Artificial intelligence ,Data mining ,business ,Estimation methods ,verification ,computer ,Mathematics - Abstract
Many handwritten signature verification algorithms have been developed in order to distinguish between genuine signatures and forgeries. An important group of these methods is based on dynamic time warping (DTW). Traditional use of DTW for signature verification consists in forming a misalignment score between the verified signature and a set of template signatures. The right selection of template signatures has a big impact on that verification. In this article, we describe our proposition for replacing the template signatures with the hidden signature-an artificial signature which is created by minimizing the mean misalignment between itself and the signatures from the enrollment set. We present a few hidden signature estimation methods together with their comprehensive comparison. The hidden signature opens a number of new possibilities for signature analysis. We apply statistical properties of the hidden signature to normalize the error signal of the verified signature and to use the misalignment on the normalized errors as a verification basis. A result, we achieve satisfying error rates that allow creating an on-line system, ready for operating in a real-world environment
- Published
- 2015
11. The DAily Home LIfe Activity Dataset: A High Semantic Activity Dataset for Online Recognition
- Author
-
Astrid Orcesi, Geoffrey Vaquette, Laurent Lucat, Catherine Achard, Département Intelligence Ambiante et Systèmes Interactifs (DIASI), Laboratoire d'Intégration des Systèmes et des Technologies (LIST), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Laboratoire d'Intégration des Systèmes et des Technologies (LIST (CEA))
- Subjects
0209 industrial biotechnology ,Computer science ,On-line recognition ,Context (language use) ,02 engineering and technology ,computer.software_genre ,Semantics ,Facial recognition system ,Action recognition ,Life activity ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Gesture recognition ,[SPI]Engineering Sciences [physics] ,020901 industrial engineering & automation ,0202 electrical engineering, electronic engineering, information engineering ,Face recognition ,ComputingMilieux_MISCELLANEOUS ,business.industry ,Smart homes ,Image recognition ,Subject (documents) ,Realistic conditions ,High level semantics ,Semantic levels ,020201 artificial intelligence & image processing ,Artificial intelligence ,Data mining ,business ,computer ,Natural language processing ,Home life - Abstract
Conference of 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017 ; Conference Date: 30 May 2017 Through 3 June 2017; Conference Code:128713; International audience; In this article, we introduce the DAily Home LIfe Activity (DAHLIA) Dataset, a new dataset adapted to the context of smart-home or video-assistance. Videos were recorded in realistic conditions, with 3 KinectTMv2 sensors located as they would be in a real context. The very long-range activities were performed in an unconstrained way (participants received few instructions), and in a continuous (untrimmed) sequence, resulting in long videos (39 min in average per subject). Contrary to previously published databases, in which labeled actions are very short and with low-semantic level, this new database focuses on high-level semantic activities such as 'Preparing lunch' or 'House Working'. As a baseline, we evaluated several metrics on three different algorithms designed for online action recognition or detection.
- Published
- 2017
12. Reconnaissance des intéractions humaines avec l'objet
- Author
-
Drira, Hassen, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université Lille 1 - Sciences et Technologies, and Mohamed Daoudi (Directeur de Thèse)
- Subjects
modélisations spatio-temporelle ,analyse de trajectoires ,abnormal gait ,reconnaissance en ligne ,invariance au taux d’exécution ,skeleton data ,rate invariant recognition ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,human object interaction recognition ,données skeleton ,démarche anormale ,multi-view dataset ,Intéraction humaine avec l’objet ,spatiotemporal modeling ,on-line recognition ,[INFO]Computer Science [cs] ,base multi-vues ,trajectories analysis - Abstract
In this thesis, we have investigated the human object interaction recognitionby using the skeleton data and local depth information provided byRGB-D sensors. There are two main applications we address in this thesis:human object interaction recognition and abnormal activity recognition.First, we propose a spatio-temporal modeling of human-object interactionvideos for on-line and off-line recognition. In the spatial modelingof human object interactions, we propose low-level feature and object relateddistance feature which adopted on on-line human object interactionrecognition and abnormal gait detection. Then, we propose object feature,a rough description of the object shape and size as new features tomodel human-object interactions. This object feature is fused with thelow-level feature for online human object interaction recognition. In thetemporal modeling of human object interactions, we proposed a shapeanalysis framework based on low-level feature and object related distancefeature for full sequence-based off-line recognition. Experiments carriedout on two representative benchmarks demonstrate the proposed methodare effective and discriminative for human object interaction analysis.Second, we extend the study to abnormal gait detection by using theon-line framework of human object interaction classification. The experimentsconducted following state-of-the-art settings on the benchmarkshows the effectiveness of proposed method.Finally, we collected a multi-view human object interaction dataset involvingabnormal and normal human behaviors by RGB-D sensors. Wetest our model on the new dataset and evaluate the potential of the proposedapproach.; Dans cette thèse, nous avons étudié la reconnaissance des actions quiincluent l’intéraction avec l’objet à partir des données du skeleton et desinformations de profondeur fournies par les capteurs RGB-D. Il existedeux principales applications que nous abordons dans cette thèse: lareconnaissance de l’interaction humaine avec l’objet et la reconnaissanced’une activité anormale.Nous proposons, dan un premier temps, une modélisation spatiotemporellepour la reconnaissance en ligne et hors ligne des intéractionsentre l’humain et l’objet. Dans la modélisation spatiale, nous proposonsdes caractéristiques de bas niveau liés à la distance entre les points duskeleton et la distance entre l’objet et les points du skeleton. Ces caractéristiquesont été adoptées pour la reconnaissance en ligne des intéractionshumaines avec l’objet et pour la détection de la démarche anormale.Ensuite, nous proposons des caractéristiques liées à d’objet qui décriventapproximativement la forme et la taille de l’objet. Ces caractéristiques sontfusionnées avec les caractéristiques bas-niveau pour la reconnaissance enligne des intéractions humaines avec l’objet. Dans la modélisation temporelle,nous avons proposé un framework élastique pour aligner les trajectoiresdes distances dans le temps afin de permettre une reconnaissancehors ligne invariante au taux d’exécution. Les expériences menées surdeux benchmarks démontrent l’efficacité de la méthode proposée. Dans ledeuxième volet de ce travail, nous étendons l’étude à la détection de la démarcheanormale en utilisant le cadre en ligne l’approche. Afin de validerla robustesse de l’approche à la pose, nous avons collecté une base multivuespour des intéractions humaines avec l’objet, de façon normale etanormale. Les résultats expérimentaux sur le benchmark des actions anormalesfrontales et sur la nouvelles base prouvent l’efficacité de l’approche.
- Published
- 2017
13. Human Object Interaction Recognition
- Author
-
Drira, Hassen, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université Lille 1 - Sciences et Technologies, and Mohamed Daoudi (Directeur de Thèse)
- Subjects
modélisations spatio-temporelle ,analyse de trajectoires ,abnormal gait ,reconnaissance en ligne ,invariance au taux d’exécution ,skeleton data ,rate invariant recognition ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,human object interaction recognition ,données skeleton ,démarche anormale ,multi-view dataset ,Intéraction humaine avec l’objet ,spatiotemporal modeling ,on-line recognition ,[INFO]Computer Science [cs] ,base multi-vues ,trajectories analysis - Abstract
In this thesis, we have investigated the human object interaction recognitionby using the skeleton data and local depth information provided byRGB-D sensors. There are two main applications we address in this thesis:human object interaction recognition and abnormal activity recognition.First, we propose a spatio-temporal modeling of human-object interactionvideos for on-line and off-line recognition. In the spatial modelingof human object interactions, we propose low-level feature and object relateddistance feature which adopted on on-line human object interactionrecognition and abnormal gait detection. Then, we propose object feature,a rough description of the object shape and size as new features tomodel human-object interactions. This object feature is fused with thelow-level feature for online human object interaction recognition. In thetemporal modeling of human object interactions, we proposed a shapeanalysis framework based on low-level feature and object related distancefeature for full sequence-based off-line recognition. Experiments carriedout on two representative benchmarks demonstrate the proposed methodare effective and discriminative for human object interaction analysis.Second, we extend the study to abnormal gait detection by using theon-line framework of human object interaction classification. The experimentsconducted following state-of-the-art settings on the benchmarkshows the effectiveness of proposed method.Finally, we collected a multi-view human object interaction dataset involvingabnormal and normal human behaviors by RGB-D sensors. Wetest our model on the new dataset and evaluate the potential of the proposedapproach.; Dans cette thèse, nous avons étudié la reconnaissance des actions quiincluent l’intéraction avec l’objet à partir des données du skeleton et desinformations de profondeur fournies par les capteurs RGB-D. Il existedeux principales applications que nous abordons dans cette thèse: lareconnaissance de l’interaction humaine avec l’objet et la reconnaissanced’une activité anormale.Nous proposons, dan un premier temps, une modélisation spatiotemporellepour la reconnaissance en ligne et hors ligne des intéractionsentre l’humain et l’objet. Dans la modélisation spatiale, nous proposonsdes caractéristiques de bas niveau liés à la distance entre les points duskeleton et la distance entre l’objet et les points du skeleton. Ces caractéristiquesont été adoptées pour la reconnaissance en ligne des intéractionshumaines avec l’objet et pour la détection de la démarche anormale.Ensuite, nous proposons des caractéristiques liées à d’objet qui décriventapproximativement la forme et la taille de l’objet. Ces caractéristiques sontfusionnées avec les caractéristiques bas-niveau pour la reconnaissance enligne des intéractions humaines avec l’objet. Dans la modélisation temporelle,nous avons proposé un framework élastique pour aligner les trajectoiresdes distances dans le temps afin de permettre une reconnaissancehors ligne invariante au taux d’exécution. Les expériences menées surdeux benchmarks démontrent l’efficacité de la méthode proposée. Dans ledeuxième volet de ce travail, nous étendons l’étude à la détection de la démarcheanormale en utilisant le cadre en ligne l’approche. Afin de validerla robustesse de l’approche à la pose, nous avons collecté une base multivuespour des intéractions humaines avec l’objet, de façon normale etanormale. Les résultats expérimentaux sur le benchmark des actions anormalesfrontales et sur la nouvelles base prouvent l’efficacité de l’approche.
- Published
- 2017
14. A simple linear-time algorithm to recognize interval graphs
- Author
-
Korte, Norbert, Möhring, Rolf H., Goos, G., editor, Hartmanis, J., editor, Barstow, D., editor, Brauer, W., editor, Brinch Hansen, P., editor, Gries, D., editor, Luckham, D., editor, Moler, C., editor, Pnueli, A., editor, Seegmüller, G., editor, Stoer, J., editor, Wirth, N., editor, Tinhofer, Gottfried, editor, and Schmidt, Gunther, editor
- Published
- 1987
- Full Text
- View/download PDF
15. Dataflow-based modeling and performance analysis for online gesture recognition
- Subjects
Gesture recognition ,TS - Technical Sciences ,Informatics ,Industrial Innovation ,ESI - Embedded Systems Innovations ,Cyber-physical systems ,ICT ,Hand-gesture recognition ,CPS ,On-line recognition ,Human computer interaction ,DTW ,Dynamic time warping - Abstract
Cyber-Physical Systems (CPS) are tightly coupled with the environment, and therefore it is important that interactions with the surroundings like Human-Computer-Interactions are performed very responsive. Since CPS are often embedded without traditional input devices, like in medical or automotive contexts, gesture recognition approaches are emerging. As those algorithms are computationally complex especially when implemented on multi-core architectures, design decisions have to be taken carefully in order to meet performance and energy constraints. In this paper, we present a Scenario-Aware Dataflow model to estimate the performance of a template-based hand gesture recognition system based on Dynamic Time Warping (DTW). Our model enables us to estimate the important characteristics like real-time capabilities for online recognition and response time of the system when implemented on a multi-core architecture. Moreover, we introduce an extension to existing SADF performance analysis tools, which enables us to acquire processor utilization from our model. Based on the performance estimations the real-time capability for online recognition was validated for different configurations and verified in our experiments.
- Published
- 2016
16. Dataflow-based modeling and performance analysis for online gesture recognition
- Author
-
Bart Theelen, Benjamin Beichler, Christian Haubelt, and Florian Grützmacher
- Subjects
Dynamic time warping ,TS - Technical Sciences ,Informatics ,Industrial Innovation ,business.industry ,Dataflow ,Computer science ,Cyber-physical systems ,Real-time computing ,Automotive industry ,Cyber-physical system ,Response time ,Input device ,On-line recognition ,Gesture recognition ,Parallel processing (DSP implementation) ,ESI - Embedded Systems Innovations ,ICT ,Hand-gesture recognition ,CPS ,Human computer interaction ,DTW ,business - Abstract
Cyber-Physical Systems (CPS) are tightly coupled with the environment, and therefore it is important that interactions with the surroundings like Human-Computer-Interactions are performed very responsive. Since CPS are often embedded without traditional input devices, like in medical or automotive contexts, gesture recognition approaches are emerging. As those algorithms are computationally complex especially when implemented on multi-core architectures, design decisions have to be taken carefully in order to meet performance and energy constraints. In this paper, we present a Scenario-Aware Dataflow model to estimate the performance of a template-based hand gesture recognition system based on Dynamic Time Warping (DTW). Our model enables us to estimate the important characteristics like real-time capabilities for online recognition and response time of the system when implemented on a multi-core architecture. Moreover, we introduce an extension to existing SADF performance analysis tools, which enables us to acquire processor utilization from our model. Based on the performance estimations the real-time capability for online recognition was validated for different configurations and verified in our experiments.
- Published
- 2016
17. A video-based text and equation editor for LaTeX
- Author
-
Özcan Öksüz, A. Enis Cetin, Uğur Güdükbay, Güdükbay, Uğur, and Çetin, A. Enis
- Subjects
Finite-state machine ,Mathematical Expression Recognition ,Latex ,Computer science ,Speech recognition ,Mathematical Notation Recognition ,Pattern Recognition ,USB ,law.invention ,On-line Recognition ,Artificial Intelligence ,Control and Systems Engineering ,law ,Handwritten Character Recognition ,Computer graphics (images) ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Pattern recognition (psychology) ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Code (cryptography) ,Electrical and Electronic Engineering ,Video based - Abstract
Cataloged from PDF version of article. In this paper we present a video based text and equation editor for LaTeX. The system recognizes what is written onto paper and generates the LaTeX code. Text and equations are written on a regular paper using a board marker, and a USB camera attached to a computer is used to capture and record the pen-tip positions in each consecutive image frame. Characters and symbols are represented as separate finite state machines (FSMs). They are written in an isolated manner and they are recognized on-line using the FSMs. In the last step, LaTeX code corresponding to recognized characters and symbols is generated. (c) 2007 Elsevier Ltd. All rights reserved.
- Published
- 2008
18. Detection and recognition of erasures in on-line captured paper forms
- Author
-
Laurent Heutte, Alain Wiart, Thierry Paquet, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU), and industriel
- Subjects
Artificial neural network ,Computer science ,Speech recognition ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,On-line recognition ,020207 software engineering ,02 engineering and technology ,Speech processing ,ComputingMethodologies_PATTERNRECOGNITION ,Erasure characterization ,Artificial Intelligence ,Handwriting ,Signal Processing ,Word recognition ,0202 electrical engineering, electronic engineering, information engineering ,Erasure ,020201 artificial intelligence & image processing ,Upstream (networking) ,Erasure detection ,Forms ,Computer Vision and Pattern Recognition ,Line (text file) ,Pen based applications ,Software - Abstract
International audience; This paper presents a method to automatically locate and recognize erasures in on-line captured handwritten documents in order to avoid a subsequent misrecognition of characters and words. We offer a comprehensive definition of the ambiguous concept of erasure in handwriting that results in a more accurate characterization of the different types of erasures. Thanks to this characterization, a preprocessing step, placed upstream of the word recognition engine, enables to classify through an MLP each couple of connected strokes as being an erasure or not using a low-level feature set. We evaluate our system on a real handwritten document database and show how our system can be tuned to operate in accordance with various recognition engines thus leading to high performance in erasure detection and recognition.
- Published
- 2007
19. Palk is linear recognizable online
- Author
-
Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur
- Subjects
Discrete mathematics ,Canonical decomposition ,TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES ,Computer science ,GeneralLiterature_INTRODUCTORYANDSURVEY ,Open problem ,Palindrome ,Construct (python library) ,COMPUTER SCIENCE ,Space (mathematics) ,ARTIFICIAL INTELLIGENCE ,LINEAR TIME ,Recognition algorithm ,Bitwise operation ,Time complexity ,COMPUTERS ,ON-LINE RECOGNITION ,Hardware_LOGICDESIGN - Abstract
Given a language L that is online recognizable in linear time and space, we construct a linear time and space online recognition algorithm for the language L・Pal, where Pal is the language of all nonempty palindromes. Hence for every fixed positive k, Palk is online recognizable in linear time and space. Thus we solve an open problem posed by Galil and Seiferas in 1978. © Springer-Verlag Berlin Heidelberg 2015.
- Published
- 2015
20. Palk is linear recognizable online
- Author
-
Kosolobov, D., Rubinchik, M., Shur, A. M., Kosolobov, D., Rubinchik, M., and Shur, A. M.
- Abstract
Given a language L that is online recognizable in linear time and space, we construct a linear time and space online recognition algorithm for the language L・Pal, where Pal is the language of all nonempty palindromes. Hence for every fixed positive k, Palk is online recognizable in linear time and space. Thus we solve an open problem posed by Galil and Seiferas in 1978. © Springer-Verlag Berlin Heidelberg 2015.
- Published
- 2015
21. Fusion of static image and dynamic information for signature verification
- Author
-
Fernando Alonso-Fernandez, Marcos Martinez-Diaz, Javier Ortega-Garcia, Julian Fierrez, UAM. Departamento de Ingeniería Informática, and Análisis y Tratamiento de Voz y Señales Biométricas (ING EPS-002)
- Subjects
Offline systems ,Biometrics ,Computer science ,Feature extraction ,Signature recognition ,Trained fusion ,On-line recognition ,Signalbehandling ,Static images ,Logistic regressions ,Hidden Markov model ,Fusion ,Local system ,Skilled forgery ,Fusion experiments ,Informática ,Signal processing ,Image fusion ,Biometrics fusion ,Training data ,business.industry ,Pattern recognition ,Signature verification ,Signature (logic) ,Dynamic information ,Handwriting recognition ,Signal Processing ,Artificial intelligence ,business - Abstract
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. F. Alonso-Fernández, J. Fiérrez, M. Martínez-Diaz, J. Ortega-García, "Fusion of static image and dynamic information for signature verification" in 16th Conference on Image Processing (ICIP), Cairo (Egypt), 2009, pp. 2725 - 2728, This paper evaluates the combination of static image (off-line) and dynamic information (on-line) for signature verification. Two off-line and two on-line recognition approaches exploiting information at the global and local levels are used. Experimental results are given using the BiosecurID database (130 signers, 3,640 signatures). Fusion experiments are done using a trained fusion approach based on linear logistic regression. It is shown experimentally that the local systems outperform the global ones, both in the on-line and in the off-line case. We also observe a considerable improvement when combining the two on-line systems, which is not the case with the off-line systems. The best performance is obtained when fusing all the systems together, which is specially evident for skilled forgeries when enough training data is available., This work has been supported by Spanish MCYT TEC2006-13141-C03-03 project.
- Published
- 2009
22. Simultaneous Segmentation and Recognition of Arabic Characters in an Unconstrained On-Line Cursive Handwritten Document
- Author
-
Elanwar, Randa I., Rashwan, Mohsen A., and Mashali, Samia A.
- Subjects
ComputingMethodologies_PATTERNRECOGNITION ,character recognition ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,on-line recognition ,Arabic handwriting ,cursive handwriting - Abstract
The last two decades witnessed some advances in the development of an Arabic character recognition (CR) system. Arabic CR faces technical problems not encountered in any other language that make Arabic CR systems achieve relatively low accuracy and retards establishing them as market products. We propose the basic stages towards a system that attacks the problem of recognizing online Arabic cursive handwriting. Rule-based methods are used to perform simultaneous segmentation and recognition of word portions in an unconstrained cursively handwritten document using dynamic programming. The output of these stages is in the form of a ranked list of the possible decisions. A new technique for text line separation is also used., {"references":["Re-jean Plamondon and N. Srihari, \"On-line and off-line handwriting\nrecognition: a comprehensive survey,\" IEEE transactions on pattern\nanalysis and machine intelligence, vol. 22, No. 1, January 2000.","Yasser Hifny, \"On-line Arabic handwriting recognition,\" M.S. thesis,\nDept. Communication and Electronics Eng., Cairo Univ., Egypt, 2000.","Hazem Y. Abdelazim, \"Recent trends in Arabic OCR,\" in Proc. 5th\nConference of Engineering Language, Ain Shams University, 2005.","R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue, Survey of\nthe State of the Art in Human Language Technology. Center for Spoken\nLanguage Understanding CSLU, Carnegie Mellon University,\nPittsburgh, PA, 1995.","E.H. Ratzlaff, \"Inter-line Distance Estimation and Text Line Extraction\nFor Unconstrained Online Handwriting,\" in Proc. 7th International\nWorkshop on Frontiers in Handwriting Recognition, pp. 33-42, 2000.","Gareth Loudon, Olle Pellijeff, and LI Zhong-Wei, \"A Method for\nHandwriting Input and Correction on Smartphones,\" in Proc. 7th\nInternational Workshop on Frontiers in Handwriting Recognition, pp.\n481-485, 2000.","H. Shimodaira, T. Sudo, M. Nakai, and S. Sagayama, \"On-line Overlaid-\nHandwriting Recognition Based on Substroke HMMs,\" in Proc. ICDAR,\n2003.","J. Lee, J. Kim, and J. H. Kim, \"Data driven design of HMM topology for\non-line handwriting recognition,\" in Proc. 7th International Workshop\non Frontiers in Handwriting Recognition, pp. 239-248, 2000.","Han Shu, \"On-Line Handwriting Recognition Using Hidden Markov\nModels,\" M.S. thesis, Massachusetts Institute of Technology, 1997.\n[10] Daniel Jurafski and James H. Martin, \"Speech and Language Processing:\nAn introduction to Natural Language processing, computational\nLinguistic and Speech recognition,\" Prentice-Hall, 2000, pp. 156."]}
- Published
- 2007
- Full Text
- View/download PDF
23. Erasure Extraction in On-Line Captured Paper Forms
- Author
-
Wiart, Alain, Paquet, Thierry, Heutte, Laurent, Jaigu, Anne, Guy Lorette, Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU), and Université de Rennes 1
- Subjects
ACM: I.: Computing Methodologies/I.5: PATTERN RECOGNITION ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,ComputingMethodologies_PATTERNRECOGNITION ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,pen based applications ,on-line recognition ,ACM: I.: Computing Methodologies/I.7: DOCUMENT AND TEXT PROCESSING ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,[INFO.INFO-TT] Computer Science [cs]/Document and Text Processing ,Erasure detection - Abstract
http://www.suvisoft.com; In this paper, we describe a preprocessing system which locates erasures in on-line captured handwritten documents. Our approach is conceived so as to be placed upstream of the handwritten recognition engine. This system classifies each couple of connected strokes using a low level feature set and a multi layer perceptron classifier. One part of this study gives an efficient definition of erasure, which results in splitting the two original classes of the problem into nineteen more accurate sub-classes. The tunable tolerance level of the system provides a good flexibility to operate in accordance with various recognition engines. We evaluate our system on a real document database and present encouraging performance results.
- Published
- 2006
24. A Compact On-line and Off-line Combined Recognizer
- Author
-
Oda, Hideto, Zhu, Bilan, Tokuno, Junko, Onuma, Motoki, Kitadai, Akihito, Nakagawa, Masaki, Jaigu, Anne, and Guy Lorette
- Subjects
Handwritten character recognition ,multiple classifier systems ,[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,off-line recognition ,on-line recognition ,evaluation score normalization ,[INFO.INFO-TT] Computer Science [cs]/Document and Text Processing - Abstract
This paper describes a compact on-line/off-line combined handwriting recognizer for Japanese characters. Conventional combined recognizers mainly consider the recognition accuracy, though recognition speed and memory size are important as well. Especially, the off-line method requires a large prototype dictionary, and therefore the on-line/off-line combined recognizers are difficult to use practically in a small computer. In order to tackle this problem, we propose an on-line/offline combined recognizer where an off-line recognizer is composed of the Modified Quadratic Discriminant Function whose dictionary size is significantly reduced. Moreover, its on-line recognizer is composed of a structured character pattern representation (SCPR) dictionary which reduces the total size of memory and Linear-time Elastic Matching (LTM) which reduces the computation time. Experimental results show that the cumulative recognition rate of top 5 candidates of a proposed 1MB dictionary is 97.3% (almost the same as that of a conventional 90MB dictionary) and that the recognition speed of the 1MB dictionary is 1.75 times faster then that of the 90MB dictionary.
- Published
- 2006
25. Fusion of static image and dynamic information for signature verification
- Author
-
Alonso-Fernandez, Fernando, Fierrez, J., Martinez-Diaz, M., Ortega-Garcia, J., Alonso-Fernandez, Fernando, Fierrez, J., Martinez-Diaz, M., and Ortega-Garcia, J.
- Abstract
This paper evaluates the combination of static image (off-line) and dynamic information (on-line) for signature verification. Two off-line and two on-line recognition approaches exploiting information at the global and local levels are used. Experimental results are given using the BiosecurID database (130 signers, 3,640 signatures). Fusion experiments are done using a trained fusion approach based on linear logistic regression. It is shown experimentally that the local systems outperform the global ones, both in the on-line and in the off-line case. We also observe a considerable improvement when combining the two on-line systems, which is not the case with the off-line systems. The best performance is obtained when fusing all the systems together, which is specially evident for skilled forgeries when enough training data is available. ©2009 IEEE.
- Published
- 2009
- Full Text
- View/download PDF
26. An isolated word recognition system based on a low-complexity parametrization procedure
- Author
-
Rulot Segovia, Héctor, Vidal Ruiz, Enrique, Casacuberta Nolla, Francisco, Rulot Segovia, Héctor, Vidal Ruiz, Enrique, and Casacuberta Nolla, Francisco
- Abstract
An Isolated Word Recognition System is presented in this paper which uses a parametrization scheme based on the two-level clipped signal Autocorrelation Function. The system prototype runs on a 64 kby. partition of a general-purpose minicomputer with quite small specific hardware requirements and, for moderate sized dictionaries (≤ 40 words), gives 95-98% recognition rates with response times better than two times real time. The system uses claasical Dynamic Programming word-matching, and its main-aimed applications are the implementation of low-cost microprocessor-based speech devices and the incorporation of Isolated Word Recognizers among the software utilities of general-purpose (mini-micro) computers. The main system features are discussed and formal evaluation tests are presented.
- Published
- 1984
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.